University Transportation Research Center - Region 2

The Region 2 University Transportation Research Center (UTRC) is one of ten original University Transportation Centers established in 1987 by the U.S. Congress. These Centers were established with the recognition that transportation plays a key role in the nation's economy and the quality of life of its citizens. University faculty members provide a critical link in resolving our national and regional transportation problems while training the professionals who address our transportation systems and their customers on a daily basis.

The UTRC was established in order to support research, education and the transfer of technology in the field of transportation. The theme of the Center is “Planning and Managing Regional Transportation Systems in a Changing World.” Presently, under the direction of Dr. Camille Kamga, the UTRC represents USDOT Region II, including New York, New Jersey, Puerto Rico and the U.S. Virgin Islands. Functioning as a consortium of twelve major Universities throughout the region, UTRC is located at the CUNY Institute for Transportation Systems at The City College of New York, the lead institution of the consortium. The Center, through its consortium, an Agency-Industry Council and its Director and Staff, supports research, education, and technology transfer under its theme. UTRC’s three main goals are:

- **Research**

 The research program objectives are (1) to develop a theme based transportation research program that is responsive to the needs of regional transportation organizations and stakeholders, and (2) to conduct that program in cooperation with the partners. The program includes both studies that are identified with research partners of projects targeted to the theme, and targeted, short-term projects. The program develops competitive proposals, which are evaluated to insure the most responsive UTRC team conducts the work. The research program is responsive to the UTRC theme: “Planning and Managing Regional Transportation Systems in a Changing World.” The complex transportation system of transit and infrastructure, and the rapidly changing environment impacts the nation’s largest city and metropolitan area. The New York/New Jersey Metropolitan has over 19 million people, 600,000 businesses and 9 million workers. The Region’s intermodal and multimodal systems must serve all customers and stakeholders within the region and globally. Under the current grant, the new research projects and the ongoing research projects concentrate the program efforts on the categories of Transportation Systems Performance and Information Infrastructure to provide needed services to the New Jersey Department of Transportation, New York City Department of Transportation, New York Metropolitan Transportation Council, New York State Department of Transportation, and the New York State Energy and Research Development Authority and others, all while enhancing the center’s theme.

- **Education and Workforce Development**

 The modern professional must combine the technical skills of engineering and planning with knowledge of economics, environmental science, management, finance, and law as well as negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the web, and knowledgeable about advances in information technology. UTRC’s education and training efforts provide a multidisciplinary program of course work and experiential learning to train students and provide advanced training or retraining of practitioners to plan and manage regional transportation systems. UTRC must meet the need to educate the undergraduate and graduate student with a foundation of transportation fundamentals that allows for solving complex problems in a world much more dynamic than even a decade ago. Simultaneously, the demand for continuing education is growing — either because of professional license requirements or because the workplace demands it — and provides the opportunity to combine State of Practice education with tailored ways of delivering content.

- **Technology Transfer**

 UTRC’s Technology Transfer Program goes beyond what might be considered “traditional” technology transfer activities. Its main objectives are (1) to increase the awareness and level of information concerning transportation issues facing Region 2; (2) to improve the knowledge base and approach to problem solving of the region’s transportation workforce, from those operating the systems to those at the most senior level of managing the system; and by doing so, to improve the overall professional capability of the transportation workforce; (3) to stimulate discussion and debate concerning the integration of new technologies into our culture, our work and our transportation systems; (4) to provide the more traditional but extremely important job of disseminating research and project reports, studies, analysis and use of tools to the education, research and practicing community both nationally and internationally; and (5) to provide unbiased information and testimony to decision-makers concerning regional transportation issues consistent with the UTRC theme.

To request a hard copy of our final reports, please send us an email at utrc@utrc2.org

Mailing Address:

University Transportation Research Center
The City College of New York
Marshak Hall, Suite 910
160 Convent Avenue
New York, NY 10031
Tel: 212-650-8051
Fax: 212-650-8374
Web: www.utrc2.org
Board of Directors

The UTRC Board of Directors consists of one or two members from each Consortium school (each school receives two votes regardless of the number of representatives on the board). The Center Director is an ex-officio member of the Board and the Center management team serves as staff to the Board.

City University of New York
 Dr. Robert E. Paaswell - Director Emeritus of NY
 Dr. Hongmian Gong - Geography/Hunter College

Clarkson University
 Dr. Kerop D. Janoyan - Civil Engineering

Columbia University
 Dr. Raimondo Betti - Civil Engineering
 Dr. Elliott Sclar - Urban and Regional Planning

Cornell University
 Dr. Huaizhu (Oliver) Gao - Civil Engineering
 Dr. Richard Geddess - Cornell Program in Infrastructure Policy

Hofstra University
 Dr. Jean-Paul Rodrigue - Global Studies and Geography

Manhattan College
 Dr. Anirban De - Civil & Environmental Engineering
 Dr. Matthew Volovski - Civil & Environmental Engineering

New Jersey Institute of Technology
 Dr. Steven I-Jy Chien - Civil Engineering
 Dr. Joyoung Lee - Civil & Environmental Engineering

New York Institute of Technology
 Dr. Nada Marie Anid - Engineering & Computing Sciences
 Dr. Marta Panero - Engineering & Computing Sciences

New York University
 Dr. Mitchell L. Moss - Urban Policy and Planning
 Dr. Rae Zimmerman - Planning and Public Administration

(NYU Tandon School of Engineering)
 Dr. John C. Falcocchio - Civil Engineering
 Dr. Kaan Ozbay - Civil Engineering
 Dr. Elena Prassas - Civil Engineering

Rensselaer Polytechnic Institute
 Dr. José Holguín-Veras - Civil Engineering
 Dr. William "Al" Wallace - Systems Engineering

Rochester Institute of Technology
 Dr. James Winebrooke - Science, Technology and Society/Public Policy
 Dr. J. Scott Hawker - Software Engineering

Rowan University
 Dr. Yusuf Mehta - Civil Engineering
 Dr. Beena Sukumaran - Civil Engineering

State University of New York
 Michael M. Fancher - Nanoscience
 Dr. Catherine T. Lawson - City & Regional Planning
 Dr. Adel W. Sadek - Transportation Systems Engineering
 Dr. Shmuel Yahalom - Economics

Stevens Institute of Technology
 Dr. Sophia Hassiotis - Civil Engineering
 Dr. Thomas H. Wakeman III - Civil Engineering

Syracuse University
 Dr. Baris Salman - Civil Engineering
 Dr. O. Sam Salem - Construction Engineering and Management

The College of New Jersey
 Dr. Thomas M. Brennan Jr - Civil Engineering

University of Puerto Rico - Mayagüez
 Dr. Ismael Pagán-Trinidad - Civil Engineering
 Dr. Didier M. Valdés-Díaz - Civil Engineering

UTRC Consortium Universities

The following universities/colleges are members of the UTRC consortium under MAP-21 ACT.

City University of New York (CUNY)
Clarkson University (Clarkson)
Columbia University (Columbia)
Cornell University (Cornell)
Hofstra University (Hofstra)
Manhattan College (MC)
New Jersey Institute of Technology (NJIT)
New York Institute of Technology (NYIT)
New York University (NYU)
Rensselaer Polytechnic Institute (RPI)
Rochester Institute of Technology (RIT)
Rowan University (Rowan)
State University of New York (SUNY)
Stevens Institute of Technology (Stevens)
Syracuse University (SU)
The College of New Jersey (TCNJ)
University of Puerto Rico - Mayagüez (UPRM)

UTRC Key Staff

Dr. Camille Kamga: Director, Associate Professor of Civil Engineering

Dr. Robert E. Paaswell: Director Emeritus of UTRC and Distinguished Professor of Civil Engineering, The City College of New York

Dr. Ellen Thorson: Senior Research Fellow

Penny Eickemeyer: Associate Director for Research, UTRC

Dr. Alison Conway: Associate Director for Education/Associate Professor of Civil Engineering

Nadia Aslam: Assistant Director for Technology Transfer

Nathalie Martinez: Research Associate/Budget Analyst

Andriy Blagay: Graphic Intern

Tierra Fisher: Office Manager

Dr. Sandeep Mudigonda, Research Associate

Dr. Rodrigo Tchamna, Research Associate

Dr. Dan Wan, Research Assistant

Bahman Moghimi: Research Assistant; Ph.D. Student, Transportation Program

Sabiheh Fagigh: Research Assistant; Ph.D. Student, Transportation Program

Patricio Vicuna: Research Assistant
 Ph.D. Candidate, Transportation Program

Membership as of January 2018
Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The contents do not necessarily reflect the official views or policies of the UTRC or the Federal Highway Administration. This report does not constitute a standard, specification or regulation. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.
Evaluating the Impacts of Real-Time Information on Subway Ridership in New York City

May 21, 2018

The City College of New York
137th Street and Convent Avenue
New York, NY 10031

UTRC
The City College of NY
137th Street and Convent Avenue
New York, NY 10031

Final Report

Public transit; real-time information; wait times; ridership; New York City

Unclassified

Unclassified

18

N/A

Form DOT F 1700.7 (8-69)
Acknowledgements

Thank you to the University Transportation Research Center (UTRC) for the opportunity to participate in the Emerging Scholars grant program, which provided the financial support for this research.

The author would like to acknowledge three former students who contributed to the research process: Almeria Senecat, Vinh Pham-Gia, and Aaron Gooze.

Last, the author would like to acknowledge Dr. Kari Watkins, an Associate Professor at Georgia Tech, who collaborated on the literature review of real-time transit information. Dr. Watkins played an important role in this project by conducting the web-based search that was the basis of the literature review, and she is a co-author on the journal publication that is a result of this project, which is:

Contents

Executive Summary .. 1
Introduction .. 2
Terminology ... 2
Methodology .. 5
 Databases Searched ... 5
 Inclusion Criteria ... 5
Primary Impacts of RTI on Passengers ... 6
Findings from the Literature Review ... 7
 Summary of All Studies ... 7
 Summary of Urban Heavy Rail Studies ... 10
Discussion of New York City and Areas for Future Research .. 12
References ... 14
List of Figures

Figure 1: Real-time information signage in a New York City Transit station.......................... 3
Figure 2: MTA’s “Subway Time” app home screen (left) & real-time information screen (right) 4

List of Tables

Table 1: Summary of all studies on the impacts of real-time information 8
Table 2: Studies on the impacts of real-time information in urban heavy rail systems............. 11
Executive Summary

It is now common for transit operators to provide real-time information (RTI) to passengers about the location or predicted arrival times of transit vehicles. The Metropolitan Transportation Authority (MTA) in New York City has recently made RTI available for most of the subway, which is the largest urban heavy rail system in the United States. In light of this, the objective of this research is to investigate how RTI is likely to impact subway passengers in New York City. The method is a two-part literature review of prior studies that assess the passenger benefits of providing RTI. The first part compiles literature for all transit modes to identify which passenger impacts are found in multiple studies. In total, twenty-eight studies were reviewed, and five key passenger benefits were identified. The second part includes a more detailed review of prior studies conducted specifically in urban heavy rail systems (six in total), which are most likely to be applicable to the New York City Subway.

The results of the first part of the literature review suggest that the five most common impacts associated with providing RTI to passengers pertain to (1) decreased wait times, (2) reductions in overall travel time due to changes in route choice, and (3) increased use of transit. RTI may also be associated with (4) increased satisfaction with transit service and (5) increases in the perception of personal security when riding transit. The prior studies of urban heavy rail systems reveal that the most likely passenger impacts are decreased wait times (three of six studies), decreases in overall travel times (one study), and increased transit use (three studies). Therefore, it is recommended that future research focus on these three areas to evaluate the impacts of RTI on New York City Subway passengers.
Introduction

It has become increasingly common for transit operators to provide real-time information (RTI) to passengers about the location or predicted arrival times of transit vehicles. One example is the Metropolitan Transportation Authority (MTA) in New York; over the past decade, the MTA has made RTI available for most of the New York City Subway (MTA, 2010; MTA, 2017). As this industry practice has increased, the body of literature evaluating the passenger impacts of this new information source has also grown, which presents an opportunity to synthesize findings. Synthesizing initial trends is particularly important for transit providers who want to understand how RTI may be impacting their passengers, such as the MTA in New York City. Subsequently, this study aims to conduct a literature review of prior studies evaluating the passenger impacts of RTI, and the findings are discussed in the context of the New York City Subway to identify important areas for future research.

This report proceeds as follows. First, background information on important terminology is presented. Then, the methodology used to conduct the literature review is described. After this, the key findings from the literature review are presented, and finally, the results are discussed in the context of New York City.

Terminology

This section provides background information on key terminology used in this report. Real-time information (RTI), real-time passenger information (RTPI), real-time transit information (RTTI), and advanced passenger information systems (APIS) are all commonly used acronyms in the prior literature; for this report, the term real-time information (RTI) is used.
Real-time information is the tracking of transit vehicles by automatic vehicle location systems or track circuit systems. Vehicle location information is typically sent to a central server, which can be located at the transit provider. Then, it is disseminated to riders, either directly or through application programming interfaces (API) used by third party software developers (Brakewood and Watkins, 2018).

RTI can be disseminated to riders via different types of media. RTI is frequently provided via stationary signage located at bus stops or in train stations. Variable message signs, such as the one shown in Figure 1, display the location of the transit vehicle or a predicted arrival time, and these are referred to as countdown clocks in New York City. Some transit providers, including the MTA’s New York City Transit, also display this information on touchscreen kiosks (Kamga, et al., 2013).

![Image of real-time information signage in a New York City Transit station](image)

Figure 1: Real-time information signage in a New York City Transit station

Over the last few years, RTI is increasingly provided to passengers’ personal devices, including websites accessed on computers or mobile phones, text messages to cell phones, and smartphone applications, such as the MTA’s “Subway Time” app shown in Figure 2.
There are a few noteworthy differences between RTI and other forms of transit information. *Schedules* refer to the predefined time and location of vehicles published by the transit operator. When vehicles are running on-time, RTI and schedule information are the same; when transit vehicles are not, RTI is a more accurate method of tracking the location of transit vehicles. Another form of transit information is *service alerts*, which provide notifications about major delays. Although service alerts are often provided to passengers in real-time as incidents occur, they can include varying levels of information (Brakewood and Watkins, 2018). This report focuses specifically on real-time information; prior studies about schedules or service alerts are not considered in the following literature review.
Methodology

This section describes the methodology for conducting the literature review, including the databases that were searched and the inclusion criteria. Then, a framework for categorizing the passenger impacts of RTI is presented.

Databases Searched

Two scholarly databases were used in the search process. The first database was the Transport Research International Documentation, known as TRID. TRID is maintained by the Transportation Research Board (TRB) of the US National Academies and covers all transportation disciplines. This database was selected because it contains nearly 1.2 million records of published research and is considered to be “the world's largest and most comprehensive bibliographic resource on transportation research information” (National Academics of Science, Engineering, and Medicine, 2018). The second database that was searched is Google Scholar, which “provides a simple way to broadly search for scholarly literature” (Google, 2018). Google Scholar was used to broaden the scope beyond transportation-specific databases. More details on the search process can be found in Brakewood and Watkins (2018).

Inclusion Criteria

To be included in this literature review, RTI studies needed to meet four criteria. First, only studies published in English were included. Second, only studies published since 1995 were included because RTI has only become widely available in the transit industry in the last two decades. Third, the research results must be published in peer-reviewed journals or conference proceedings; technical reports for which peer review status was unknown were excluded from
this review. Last, only studies specifically evaluating the passenger benefits of RTI were considered (Brakewood and Watkins, 2018).

Primary Impacts of RTI on Passengers

This report categorizes RTI impacts into five major categories for which multiple studies have been undertaken. Three of the five fall under behavioral outcomes associated with RTI: increased transit use, decreased travel time, and decreased wait time. RTI could impact levels of *transit use* by impacting a passenger’s decision to make a trip or by impacting a passenger’s choice to take transit versus another mode. RTI could also influence which route a passenger chooses, and this would impact their overall *travel time*, as different paths typically have different travel times. Similarly, RTI could play a role in the decision of which stop a passenger boards a transit vehicle or what time they choose to leave their point of origin, and both could impact the traveler’s total travel time or their wait time. Because the prior literature often divides transit travel time into wait time and in-vehicle travel time components, the *wait time* component is presented separately in this review. This report also includes two factors related to passenger feelings and perceptions for which multiple studies have been conducted: increased *satisfaction with transit* and increases in the *perception of security*. Finally, it should be noted that a small number of studies have also identified other potential passenger impacts of RTI (such as increased transfers between modes). However, due to the limited number of studies on other impacts, they are not reviewed in here; interested readers are referred to Brakewood and Watkins (2018) for a brief summary of other impacts.
Findings from the Literature Review

This section presents the key findings from the literature review. First, all studies pertaining to the passenger impacts of real-time information are summarized. Then, more detailed summaries of studies specifically pertaining to urban heavy rail systems (i.e., subway or metro systems) are presented since these findings are most likely to be applicable to the New York City Subway.

Summary of All Studies

In total, twenty-eight studies were identified that pertain to the five primary passenger impacts of RTI, and these studies are summarized in Table 1. The first column of Table 1 shows the authors’ names and the year of publication; the second column displays the location where the study was conducted; and the third column identifies the transit modes evaluated. The five rightmost columns in Table 1 summarize the results of the five primary passenger impacts of RTI. A filled circle represents a positive finding; a half-filled circle signifies a finding that is sometimes positive; an empty circle implies that the study investigated the passenger impact but the results were null, negative, or not statistically significant; and a dash means that the study did not investigate that impact (Brakewood and Watkins, 2018).

Of the twenty-eight studies, thirteen examined the wait time implications of RTI, and twelve of these studies found positive results. This implies that wait times have the most supporting evidence of the five impacts. Six of the twenty-eight studies examined travel time implications from path choice. Thirteen studies evaluated the impacts of RTI on transit use, and nine of them found positive results. Six studies examined satisfaction, and of those, only three found fully positive results. Similarly, five of the twenty-eight studies examined perceived personal security, and of those, only two found fully positive results. Satisfaction and perception of security are areas where future research could address impacts more thoroughly.
Table 1: Summary of all studies on the impacts of real-time information

<table>
<thead>
<tr>
<th>#</th>
<th>Authors (Year)</th>
<th>Study Location</th>
<th>Modes</th>
<th>Wait Time</th>
<th>Total Travel Time</th>
<th>Transit Use</th>
<th>Satisfaction</th>
<th>Perceived Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brakewood, Barbeau & Watkins (2014)</td>
<td>Tampa, USA</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>○</td>
<td>●</td>
<td>□</td>
</tr>
<tr>
<td>2</td>
<td>Brakewood, Macfarlane & Watkins (2015)</td>
<td>New York City, USA</td>
<td>Bus</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Brakewood, Rojas, Zegras, Watkins & Robin (2015)</td>
<td>Boston, USA</td>
<td>Commuter Rail</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Cats, Koutsopoulos, Burghout & Toledo (2011)</td>
<td>Stockholm, Sweden</td>
<td>Subway</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Cats & Gkioulou (2014)</td>
<td>Stockholm, Sweden</td>
<td>Subway, Bus, Light Rail</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Chow, Block-Schachter & Hickey (2014)</td>
<td>Boston, USA</td>
<td>Heavy Rail</td>
<td>●</td>
<td>-</td>
<td>●</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Dziekan & Vermeulen (2006)</td>
<td>The Hague, Holland</td>
<td>Tram</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>Estrada, Giesen, Mauttone, Nacelle & Segura (2015)</td>
<td>Rivera, Uruguay</td>
<td>Bus</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Fan, Guthrie & Levinson (2016)</td>
<td>Minneapolis & St. Paul, USA</td>
<td>Light Rail, Commuter Rail, BRT</td>
<td>○</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Ferris, Watkins & Borning (2010)</td>
<td>Seattle, USA</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>11</td>
<td>Fonzone & Schmöcker (2014)</td>
<td>Fictitious Network</td>
<td>Not Specified</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Fries, Dunning & Chowdhury (2011)</td>
<td>Clemson University, USA</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>○</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Ge, Jabbari & MacKenzie (2017)</td>
<td>Seattle, USA</td>
<td>Transit (bus, streetcar), Shared Modes (car-, bike- & ride-share)</td>
<td>-</td>
<td>-</td>
<td>○</td>
<td>○</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Gooze Watkins & Borning (2013)</td>
<td>Seattle, USA</td>
<td>Bus</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

● = positive finding; □ = sometimes positive finding; ○ = negative / not significant finding; - = did not consider

Adapted from Brakewood and Watkins (2018)
Table 1 (continued): Summary of all studies on the impacts of real-time information

<table>
<thead>
<tr>
<th>#</th>
<th>Authors (Year)</th>
<th>Study Location</th>
<th>Modes</th>
<th>Wait Time</th>
<th>Total Travel Time</th>
<th>Transit Use</th>
<th>Satisfaction</th>
<th>Perceived Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Hickman & Wilson (1995)</td>
<td>Boston, USA</td>
<td>Bus</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Ji, Zhang, Gao & Fan (2017)</td>
<td>Nanjing, China</td>
<td>Metro, BRT, Bus</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>Kaplan, Monteiro, Anderson, Nielsen & Santos (2016)</td>
<td>Recife/Natal, Brazil & Copenhagen, Denmark</td>
<td>Bus, BRT, LRT (Brazil) & Metro, Local/ Suburban/ Regional Trains, Buses (Denmark)</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>Liu, Shi & Jian (2017)</td>
<td>Chengde, China</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Papangelis, Nelson, Sripada & Beecroft (2016)</td>
<td>Rural Scotland</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>Politis, Papaioannou, Basbas & Dimitriadis (2010)</td>
<td>Thessaloniki, Greece</td>
<td>Bus</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>Reed (1995)</td>
<td>University of Michigan, USA</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>Tang & Thakuriah (2007)</td>
<td>Chicago, USA</td>
<td>Bus & Train</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>Tang & Thakuriah (2011)</td>
<td>Chicago, USA</td>
<td>Transit</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>Tang & Thakuriah (2012)</td>
<td>Chicago, USA</td>
<td>Bus</td>
<td>-</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>Trozzi, Gentile, Kaparias & Bell (2013)</td>
<td>Fictitious Network</td>
<td>Bus</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>Watkins, Ferris, Borning, Rutherford & Layton (2011)</td>
<td>Seattle, USA</td>
<td>Bus</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>Zargayouna, Othman, Scemama & Zeddini (2015)</td>
<td>Toulouse, France</td>
<td>Bus</td>
<td>-</td>
<td>●</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>Zhang, Shen & Clifton (2008)</td>
<td>University of Maryland, USA</td>
<td>Shuttle Bus</td>
<td>-</td>
<td>-</td>
<td>○</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

● = positive finding; ● = sometimes positive finding; ○ = negative / not significant finding; - = did not consider

Adapted from Brakewood and Watkins (2018)
Summary of Urban Heavy Rail Studies

Of the twenty-eight studies reviewed in the previous section, only six studies evaluated the impacts of real-time information on passengers in urban heavy rail systems (i.e., subway or metro systems). These six studies were reviewed in detail, and the results are shown in Table 2, which focuses on four key dimensions.

The first dimension shown in Table 2 is the media through which RTI is provided to the transit rider, and this was divided into signage or personal devices, such as smartphone applications. Most of these studies (five of six) considered RTI provided via stationary signage.

The second dimension is the method used in the study. The methodologies were classified into a general approach, which were either surveys of individual travelers or simulation models, and then additional details about the analysis are provided. Four of the six prior studies utilized survey-based methods, and for these, the sample size of individuals participating in the survey and the statistical method utilized were noted.

The third and fourth dimensions shown in Table 2 are the passenger impacts that were evaluated and the key findings. These six studies considered a total of four passenger impacts: wait times (three studies), total travel times (one study), transit use (three studies), and satisfaction (one study). As can be seen in Table 1 and Table 2, the only study that had a negative findings (findings that were not significant) pertained to passenger satisfaction levels, which was Chow et al., 2014. The studies of wait time, total travel time, and transit use impacts all had positive results, which suggest that these are most likely to be found in other urban heavy rail systems with RTI. However, there were a limited number of studies on each impact, particularly path choice, and therefore, future research is deemed necessary.
Table 2: Studies on the impacts of real-time information in urban heavy rail systems

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Media</th>
<th>Method</th>
<th>Impacts</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Tang & Thakuriah</td>
<td>Signage</td>
<td>Survey-based method (n=1,020)</td>
<td>Transit use</td>
<td>67% of all respondents stated that they would increase their transit use if RTI became available at stops/station; This was higher among current transit riders (70%) compared to non-riders (60%); Bivariate probit models showed some differences based on demographics, automobile availability, etc.</td>
</tr>
<tr>
<td>2011</td>
<td>Cats, Koutsopoulos, Burghout & Toledo</td>
<td>Signage & Personal Devices</td>
<td>Simulation model</td>
<td>Total travel time</td>
<td>Comprehensive RTI systems have the potential to lead to shifts in path choice and travel time savings</td>
</tr>
<tr>
<td>2014</td>
<td>Cats & Gkioulou</td>
<td>Personal Devices</td>
<td>Simulation model</td>
<td>Wait time</td>
<td>RTI users adapt their behavior to shorten their wait times</td>
</tr>
<tr>
<td>2014</td>
<td>Chow, Block-Schachter & Hickey</td>
<td>Signage</td>
<td>Survey-based method (n=4,118)</td>
<td>Wait time, transit use, satisfaction</td>
<td>After RTI, passengers reduced their wait time estimates by 0.85 minutes on average; after further controlling for service disruptions, wait time estimates were reduced by 1.3 minutes on average (17% of total wait times). After RTI, passengers had a higher overall rating of the transit agency (3.46 compared to 3.41), but this was not statistically significant. The fixed effects model suggests that ridership increased by 1.7%; however, the authors said this is "preliminary".</td>
</tr>
<tr>
<td>2016</td>
<td>Kaplan, Monteiro, Anderson, Nielsen & Santos</td>
<td>Signage & Personal Devices</td>
<td>Survey-based methods (n=1123)</td>
<td>Transit use</td>
<td>Results show that searching for real-time information is associated with trips at night and to unfamiliar places (non-routine transit use)</td>
</tr>
<tr>
<td>2017</td>
<td>Ji, Zhang, Gao & Fan</td>
<td>Signage</td>
<td>Survey-based method (n=1031)</td>
<td>Wait time</td>
<td>Results of the structural equation model suggest that RTI signage decreases the perception of wait times; shorter wait times (5 minutes) decreased 15.6%; longer wait times (10 minutes) decreased 30.6%</td>
</tr>
</tbody>
</table>

Adapted from Brakewood and Watkins (2018)
Discussion of New York City and Areas for Future Research

This section presents a brief discussion of how the findings from the literature review may be applicable to New York City, where real-time information has been made available for most of the subway over the past decade (MTA, 2010; MTA, 2017).

The most promising benefit for subway passengers is reduced wait times. In the first part of the literature review, twelve of twenty-eight studies across various transit modes found reductions in passenger wait times associated with RTI, and three of these studies were conducted in urban heavy rail systems. If future research is conducted for the New York City Subway, one important difference to evaluate is actual wait times (i.e., how long a passenger waits in a station for the train) versus perceived wait times (i.e., how long a passenger thinks s/he has been waiting) for RTI users versus non-users. One of the most cited prior studies of RTI impacts on bus riders found significant decreases in both actual and perceived wait times for RTI users compared to non-users (Watkins et al., 2011); however, this difference has not been explored in the context of urban heavy rail systems. RTI provided via smartphone apps may reduce actual wait times because a subway passenger checking an RTI app at home or at work could “time” his or her arrival to the station to meet the train; however, this impact may be limited in urban heavy rail systems due to high frequencies on many subway lines. Additionally, countdown clocks that have been installed in most subway stations are likely to reduce perceived wait times since passengers may have a better understanding of how long they are waiting when RTI signage is nearby.

A second passenger benefit identified in the literature review is reductions in total travel time due to changes in path choice. Six of the twenty-eight studies examined in the first part of the literature review revealed travel time impacts; however, only one of these studies was
conducted for heavy rail systems. This could be a particularly promising area for future research in a dense transit network like the New York City Subway because there are often multiple paths between origin-destination pairs. For example, a passenger choosing between a “local” train arriving at the station sooner and an “express” train arriving later may ultimately select the later arriving express train to minimize overall travel time to his or her destination station when RTI is available. Future research in urban heavy rail systems could conduct rider surveys of route choice, which would be different from the prior studies that primarily utilized simulation modelling.

Nine of the twenty-eight studies found increases in transit use associated with RTI, and three of these were specific to urban heavy rail systems. Therefore, future research in New York City could aim to assess this impact. Finally, there were limited prior studies pertaining to increased satisfaction with transit and increased perceptions of security when riding transit associated with RTI in urban heavy rail systems. Because these impacts were measurable in other transit modes, future research may also find positive results in heavy rail systems.

In summary, five key benefits of providing real-time information to transit passengers were identified from a comprehensive literature review (Brakewood and Watkins, 2018). Of these five impacts, the two most promising impacts for New York City Subway passengers are reductions in wait times – particularly perceived wait times when countdown clocks are installed in stations – and reductions in overall travel times, which may be possible in dense transit networks like the subway where passengers often have multiple paths between origin-destination pairs. Future research is recommended to evaluate these two impacts.
References

