A GPS Data Processing Method For Truck Activity Analysis

UTRC Transportation Technology Symposium
November 20, 2015

Huajing Shi, Ph.D.
The Port Authority of New York and New Jersey
The Importance of Truck Activities to the Region

- Truck activities and regional economic conditions
- Impacts of truck activities
- Data challenges for analyzing truck activities:
 - consistency
 - coverage, and
 - timeliness
Hudson River Crossing Location

• Transportation challenges posed by the Hudson River
 • from the south end of Staten Island to the US/Canadian border

• The complexity of the transportation network in NY/NJ metro region leads to
 • computational burden
 • errors of spatial mismatches
 • assignment confusion
Truck GPS Data Sample Selection Method

Data source: American Transportation Research Institute (ATRI)

• The trucks selected were those appeared in the 28-county NY/NJ Metro region during the sample selection week. The movements of these selected trucks were traced backward/forward for one week.

• Each data entry (or record) is a position read
 • unique truck ID
 • time/date stamp
 • location: latitude, longitude, county, state, country
Challenges of Using GPS Data

- Differentiate between moving and stationary data records
- Irregular and low GPS data reporting frequency
Derive Hudson Crossing Location from GPS Data

Frequency distribution of time intervals between the GPS sighting points before/after crossing the Hudson

<table>
<thead>
<tr>
<th>Time Interval (minute)</th>
<th>2009</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 or less</td>
<td>37.3%</td>
<td>64.6%</td>
<td>94.8%</td>
<td>97.5%</td>
<td>97.5%</td>
</tr>
<tr>
<td>61-75</td>
<td>39.9%</td>
<td>17.6%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Other</td>
<td>22.8%</td>
<td>17.8%</td>
<td>4.9%</td>
<td>2.4%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

• Routing choice of river crossing is largely driven by
 • the last stop before the crossing & the first stop after the crossing
 • travel costs
GPS Data Processing Method

• Data structure
 - truck ID
 - current timestamp
 - current location
 - previous timestamp
 - distance travelled from the previous sighting read
 - the time elapsed since the previous sighting read
 - the space mean speed between the current and the previous sighting reads

• Step 1: Motion status detection — determine whether or not the truck is in motion or at stationary at any given time
 - motion/stationary status indicator

• Step 2: Stop identification — differentiate intentional stops from un-intentional stops

• Step 3: Crossing location identification & estimation — determine the crossing locations for a crossing event
Motion Status Detection

• Develop a rule-based algorithm to set the value of motion/stationary status indicator
 * motion/stationary status indicator

• Critical values used for setting the indicator
 * distance travelled between the current and previous sighting points
 * space mean speed between the current and previous sighting points

• The most influential factors in setting the critical values
 * GPS data reporting frequency
 * characteristics of the road network and traffic conditions
 * GPS signal blockage

• Fix false moving status and false short trips
 * calculate the continuous time and the number of reads the truck remained in the same status (either move or stationary)
 * move/stationary_duration
 * move/stationary_counts
Validity Check for Motion Detection Results

- Aggregate analysis for verifying the motion detection results – stationary time vs. time in motion

- Hours of Service Regulations used as a reference point:
 - drive for a maximum of 11 hours, and work for a maximum of 14 hours in a day, before having to take 10 hours off duty or in the sleeper
 - work no more than 70 hours in an 8 day period, before taking a 34-hour reset

- Service cycle length = 8 days * 24 hours/day + 34 hours = 226 hours
- Total number of hours on the move when on duty per service cycle = 70 * (11/14) = 55 hours
- The percentage of time spent on the move per service cycle: 24 ~ 31%

Results:

- Calculate the accumulated time spent on the move and in stationary in the dataset
- The percentage of time spent on the move was 25.5% in 2014
Stop Identification

- Stops
 - intentional stops
 - un-intentional stops

- A stop duration threshold is usually used for differentiating intentional vs. un-intentional stops
 - 10 minutes threshold

2,592 sighting points; 29 business stops out of 146 total stops
The Critical Data Records for a Crossing Event

Point A: the last stop made before the crossing

Point B: the last sighting read before the crossing

Point C: the first sighting read after the crossing

Point D: the first stop made after the crossing

• Four configurations for before/after crossing OD pairs:
 ✦ B to C
 ✦ B to D
 ✦ A to C
 ✦ A to D

Travel direction
Hudson River
Bridge
Hudson Crossing Location Estimation

- Build OD market share lookup table based on the observed crossing events

- OD market share lookup table provided for each before/after crossing OD pair, the percentage of trucks using each available crossing facility
 1. George Washington Bridge, Lincoln Tunnel and Holland Tunnel
 2. Staten Island Bridges
 3. Tappan-Zee
 4. Mid-Hudson bridges
 5. Upper NY area

- Estimate the crossing locations for the un-determined crossing events using the OD market share lookup table
 - Assign a crossing location to each un-determined crossing events

<table>
<thead>
<tr>
<th>Year</th>
<th>Observed</th>
<th>Estimated</th>
<th>Un-determined</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>79.52%</td>
<td>20.30%</td>
<td>0.17%</td>
</tr>
<tr>
<td>2013</td>
<td>81.22%</td>
<td>18.68%</td>
<td>0.10%</td>
</tr>
<tr>
<td>2012</td>
<td>77.55%</td>
<td>21.76%</td>
<td>0.68%</td>
</tr>
<tr>
<td>2011</td>
<td>54.68%</td>
<td>44.99%</td>
<td>0.33%</td>
</tr>
<tr>
<td>2009</td>
<td>36.46%</td>
<td>63.06%</td>
<td>0.48%</td>
</tr>
</tbody>
</table>
An Application of Hudson Crossing Estimation

• Study the changes in truck routing and travel patterns
 • Calculate the share of facility usages by the trucks serving different market segments
 • e.g. long distance market vs. local market
 • Calculate the percentage of trucks using each crossing group by direction (i.e., eastbound and westbound) at different years
 • Analyze the trend of the long-distance, New England bound trucks crossing through New York City

![Graph showing share of long-distance, New England bound trucks crossing through New York City from 2009 to 2014.]
Conclusions and Future Research

- The truck GPS data after being appropriately processed, has the potential to provide much more detailed, consistent and comprehensive information about truck behavior.
- The value of this data source will increase as better quality GPS data collected from more trucks become available at lower cost.
- Cordon/border crossing analysis
- Real Origin/Destination demand that related to core-business activities