Using Big Data to Identify Hotspots of Pedestrian Crashes in Manhattan

Presented by Prof. Kaan Ozbay November 19th, 2014

Kaan Ozbay, Kun Xie and Hong Yang Center for Urban Science + Progress (CUSP) Department of Civil & Urban Engineering (CUE) New York University

Introduction

- A total of 9664 pedestrian crashes occurred
- About 9.4 % of them (906) involved serious injuries and fatalities
- Importance of Identifying Hotspots of Pedestrian Crashes
 - Vision Zero Action Plan was launched in 2014, aimed at reducing the crash rate and relieving crash severity
 - Accurate identification of these hotspots can result in efficient allocation of government resources
- Two Important Factors in Hotspot Identification:
 - a) Different costs of crashes by severity
 - b) Effects of crash exposures such as traffic volume, road length, etc.

+

Descriptive Analysis

■ Pedestrian Crash Frequency by Severity (2005~2012)

+ Descriptive Analysis

■ Pedestrian Crash Causes

+ "Big Data" Used

- No injury
- Possible injury
- Fatality
- •••

(Source: NYSDOT)

Traffic

- o Traffic volume
- o Taxi trips
- MTA turnstile

(Source: NYSDOT, TCL, MTA)

Land Use

- Source:
- Residential
- Commercial
- 0 ...

(Source: NYCDCP)

Socioeconomic

- o Population
- Employment
- **GDP**
- 0 ...

(Source: US Census Bureau)

*Big Data" Used: Taxi Trip Data

- Taxi pick-up and drop-off data from 2008 to 2012. Size of dataset is over 100 GB
- Taxi trips concentrate on main corridors such as 5 Ave and 6 Ave.

+ "Big Data" Used: MTA Turnstile Data

- Refreshed weekly, available up until May 05, 2010
- Midtown and downtown have large passenger volumes

+ Grid Cells

■ Basic geographical unites of analysis: grid cells (300×300 feet²)

■ Traffic, land use, demographic and socioeconomic features were captured for each cell

+ Spread of Crash Cost

■ Crash Cost by Severity

Crash Type	Comprehensive Cost per Crash (\$)		
Fatality	4,538,000		
Incapacitating injury	230,000		
Non-incapacitating	50 700		
injury	58,700		
Possible injury	28,000		
Property damage only	2,500		

(Source: National Safety Council. All values were converted to 2012 dollars)

■ 2-D Kernel Density Function

$$\lambda(s) = \sum_{i=1}^{n} \frac{1}{\pi r^2} k(\frac{d_{is}}{r})$$

 $\lambda(s)$: Density at location s

r: Bandwidth (1000 feet is used here)

d_{is}: Distance from location s to crash i

k(.): kernel function (Gaussian function is used here)

Potential for Safety Improvement (PSI)

PSI=Actual Crash Cost - Base Cost

- The potential for safety improvement (PSI) was used as a measure to rank crash hotspots
- Base cost of "similar" sites can be estimated by the crash cost model
- Effects of crash exposures can be accounted for

+ Crash Cost Model

■ Linear Model

 Develop a linear relationship between dependent variable crash cost and independent variables such as taxi trips, truck ratio, population, etc.

$$y_i = \beta x_i + \mu_i, \ \mu_i \sim N(0, \sigma^2)$$

y_i: Pedestrian crash cost per year (\$)

 x_i : Independent variables

 β : Coefficients of x_i

 μ_i : Error term

Weakness of linear model

- Ignore the fact that crash cost is left-censored at zero.
- Have the chance to give a negative prediction of the crash cost

+ Crash Cost Model

■ Tobit Model

■ Appropriate for describing relationship between a **non-negative** dependent variables (crash cost) and independent variables.

$$y_i = \begin{cases} y_i^* & \text{if } y_i^* > 0 \\ 0 & \text{if } y_i^* \le 0 \end{cases}$$

$$y_i^* = \beta x_i + \mu_i, \ \mu_i \sim N(0, \sigma^2)$$

y_i: Pedestrian crash cost per year (\$)

y_i*:Latent variables (\$)

x_i: Independent variables

 β : Coefficients of x_i

 μ_i : Error term

Modeling Results

■ Model Comparison: Tobit model vs Linear Model

	Log-likelihood	AIC	BIC
Linear model	-74373.18	148774.4	148868.60
Tobit model	-72883.64	145795.3	145889.50

- The Tobit model outperforms the linear model by presenting higher log-likelihood and lower AIC and BIC.
- Results of the Tobit Model

	Estimate	Std. Error	z value	Pr(> z)
Intercept	-1.34E+04	1.73E+03	-7.745	9.55e-15 *
Vehicle mile traveled	7.99E-04	3.65E-04	2.189	0.028603 *
Taxi trips (10^3)	3.15E+01	3.45E-00	3.027	0.002471 *
Subway passengers (10³)	1.77E+01	1.62E-01	10.942	< 2e-16 *
Truck ratio	One unit incre	ase is	<i>s</i> .335	< 2e-16 *
Bus stop density			17.052	< 2e-16 *
Length of sidewarks	One unit incre		4.081	4.48e-05 *
Total population	expected to inc	crease	7.614	2.66e-14 *
Ratio of population over 6.	ne annual cras	sh cost	2.634	0.008432 *
Unemployment	by 17.7 \$	VI 101	5.094	3.51e-07 *
Ratio of commercial areas	1.44E+04	2.84E+03	5.051	4.39e-07 *
Ratio of residential areas	7.97E+03	2.34E+03	3.403	0.000667 *
Ratio of manufactural areas	8.37E+03	3.09E+03	2.708	0.006764 *

^{*}Indicate variables which are statistically significant

+ Hotspot Identification

Spot with the greatest improvement potential: Broadway (from 180th to 181st ST)

272,384 \$ can be saved annually from this spot!

Comparisons of Hotspots Identified

- Identify top 300 hotspots: by crash frequency vs by PSI
- Only 40 hotspots (about 13.3%) are overlapped
- Hotspots identified by PSI tend to be on continuous regions

Thank You!

Kaan Ozbay, Kun Xie and Hong Yang Center for Urban Science + Progress (CUSP) Department of Civil & Urban Engineering (CUE) New York University