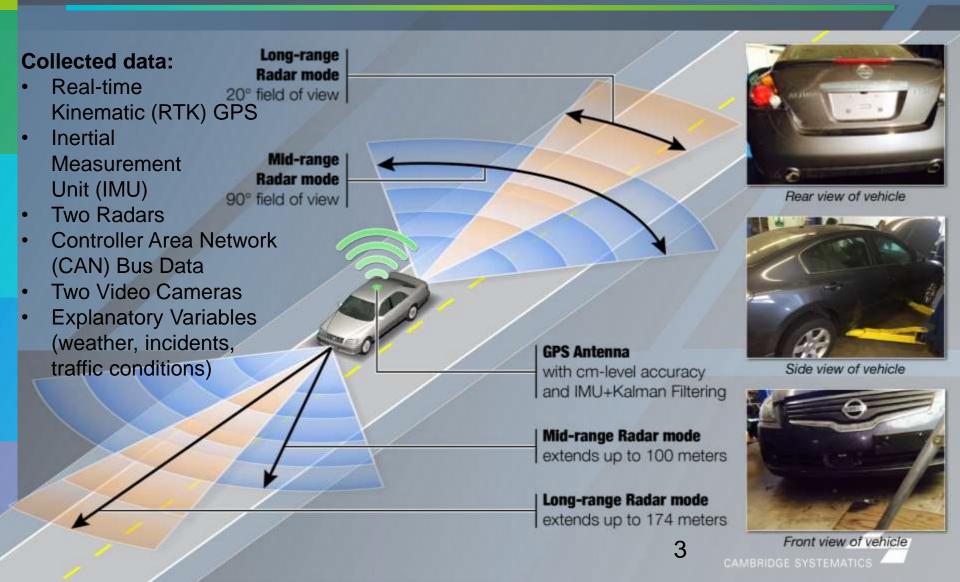


Analyzing Driver Behavior at the Micro Level

presented to

2016 Transport-Tech Summit

presented by


Cambridge Systematics, Inc.

Michalis Xyntarakis Vassili Alexiadis

Overview

- Data Collection Effort in Berkeley California
 - » Real Time Kinematic GPS + Inertial Measurement Unit (IMU)
 - » Multimode radars
 - » Video cameras, Controller Area Network (CAN) Bus
 - » Variables in the collected data
 - » Examples of collected data
 - » Next steps & data release timeline
- Measures of driver behavior at the microscopic/trajectory level

Instrumented Vehicle (IV)

Data Collection Site

Data Collection Objectives

Collect data for both car following & lane changing behavior under different conditions to investigate:

- Incidents & weather
- Arterial vs freeways
- Intra-driver behavior
- Inter-driver behavior
- Validate a car-following traffic simulation

Driver Schedule

April 2016						
10	11	12	13	14	15	16
	Driver 1		Driver 1		Driver 1	
	3-6 PM		3-6 PM		3-6 PM	
17	18	19	20	21	22	23
	Driver 2		Driver 2	Driver 3	Driver 3	
	3-6 PM		3-6 PM	3-6 PM	3-6 PM	
24	25	26	27	28	29	30
			Driver 2	Driver 3	Driver 3	
			3-6 PM	3-6 PM	3-6 PM	

·						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2	3	4	5	6	7
	Driver 2	Driver 3	Driver 1	Driver 2	Driver 2	
	DITVEL 2	DITVEL 3	DIIVELI	DITVEL 2	DITVEL 2	
	1-4 PM	3-6 PM	1:45-4:45 PM	3-6 PM	3-6 PM	
8	9	10	11	12	13	14
		Driver 1	Driver 1	Driver 3	Driver 2	
		3-6 PM	1-4 PM	1-4 PM	3-6 PM	
15	16	17	18	19	20	21
	Driver 1					
	3-6 PM					

25

26

28

May 2016

- → 3 drivers
- → 60 hours in total
- → 95 circuits in total
- → Driver 1: 7 days, 21hrs
- Driver 2: 7 days, 21hrs
- Driver 3, 6 days, 18hrs

22

Raw Collected Data

(approximately every 50 milliseconds)

GPS & Inertial Measurement Unit	Radars (up to 128 objects)	Vehicle Controller Area Network (CAN) Bus	Video
Position (cm accuracy)	Range (0.5 meters accuracy)	Brake activation	Forward
Speed	Angle	Throttle %	Rear
Acceleration	Time Stamp 2	Speed	Time Stamp 3
Heading		RPM	
Time Stamp 1		Turn signals	
		Heading	
		Time Stamp 2	

~2OMB/hour	~2 GB/hour	~10MB/hour	~2GB/hour

Off-line Calculations on the Data

- Real Time Kinematic corrections & Kalman Filtering on IV Trajectory
- Bit-level radar data decoding
- GPS Time-stamp synchronization & linear interpolation
- Extraction of trajectories from radar tracks
- Calculation of distance along circuit
- Assignment of vehicles to lanes

Processed Trajectory Data

(every 50 milliseconds)

Inci	trument	DO	Vahi	
	li ullicili	LCU	A CITI	

Position (lat, long)

Speed

Acceleration

Heading

Brake activation

Throttle %

RPM

Turn signals

Distance along path

Distance from lane centerline

Lane

Surrounding Vehicles

Position (lat, long)

Distance along path

Distance from lane centerline

Lane

Driver Logs (Weather & Incidents, Events)

Events (sample)

Collision, 2 cars on shoulder before Ashby exit

Now 3 cars and California Highway Patrol on the shoulder before Ashby

Incident near Ashby cleared. Motorcycle cop ticketing driver at I-80, before merge with I-580

Minor crash, 2 crash on shoulder at Ashby exit. No video

Freeway: truck on shoulder at Ashby, erratic driver in right lane (white Altima) after Ashby. Arterial: right lane still closed

Computer crashed 2 min before end of circuit - data still saved

Truck still on shoulder at Ashby, right lane still closed

Weather

Sunny, windy

Sunny

Partly cloudy

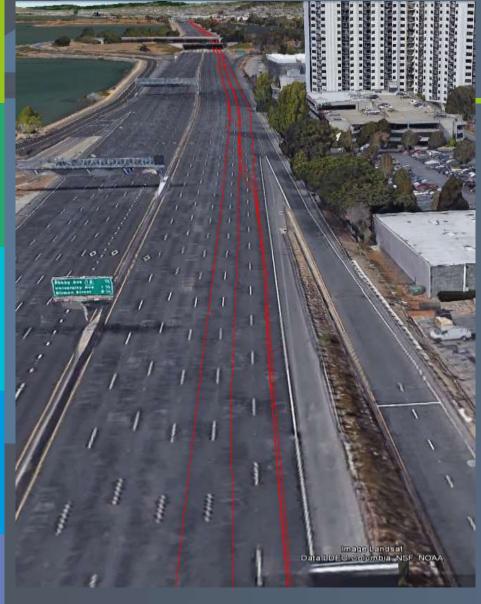
Cloudy (slight drizzle)

Cloudy

Traffic Conditions (sample)

Stop and go after I-580/I-80 merge

Heavy. Queue spillback at San Pablo and 40th

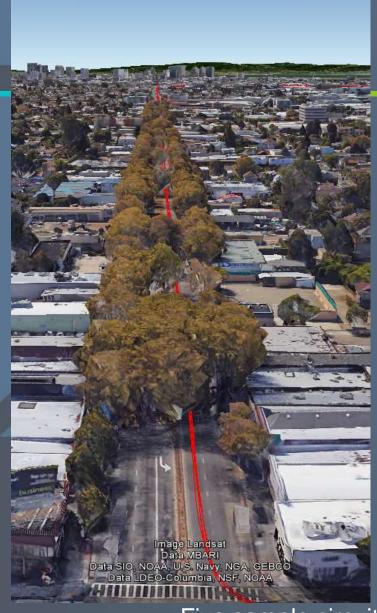

Stop-and-go on I-80, mostly clear on San Pablo

Gridlock on I-80

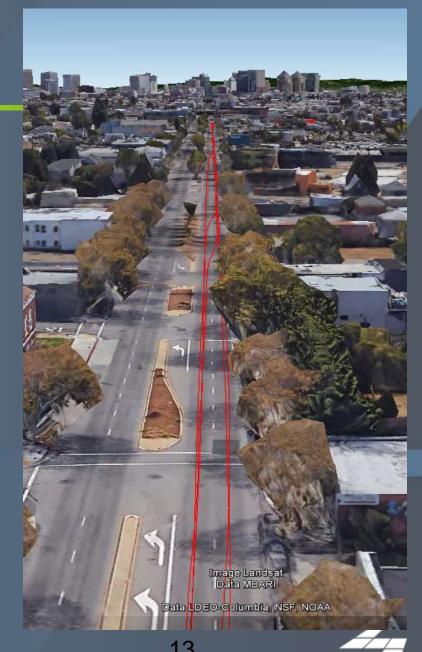
GPS/IMU Data (+Website Demo)

180 North

University Ave



Five sample circuits from a single day



San Pablo (start)

San Pablo (end)

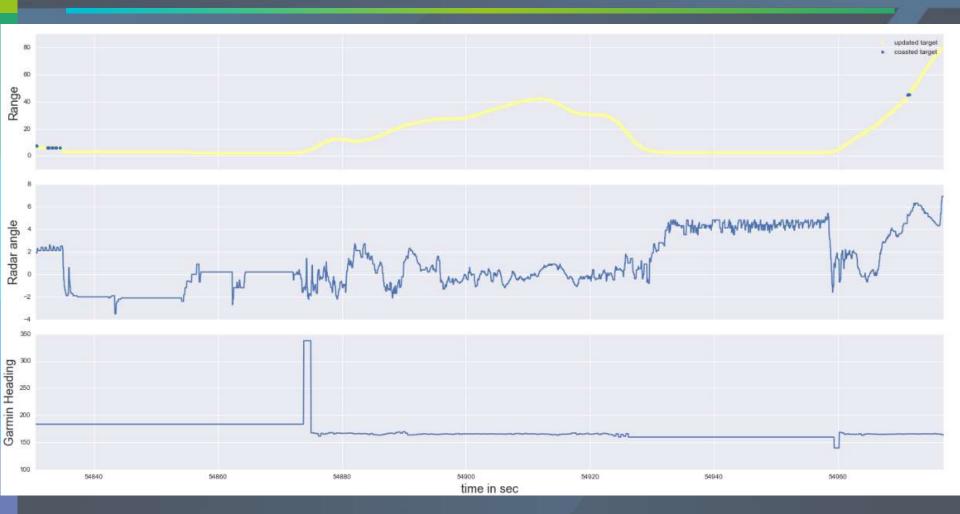
Five sample circuits from a single day

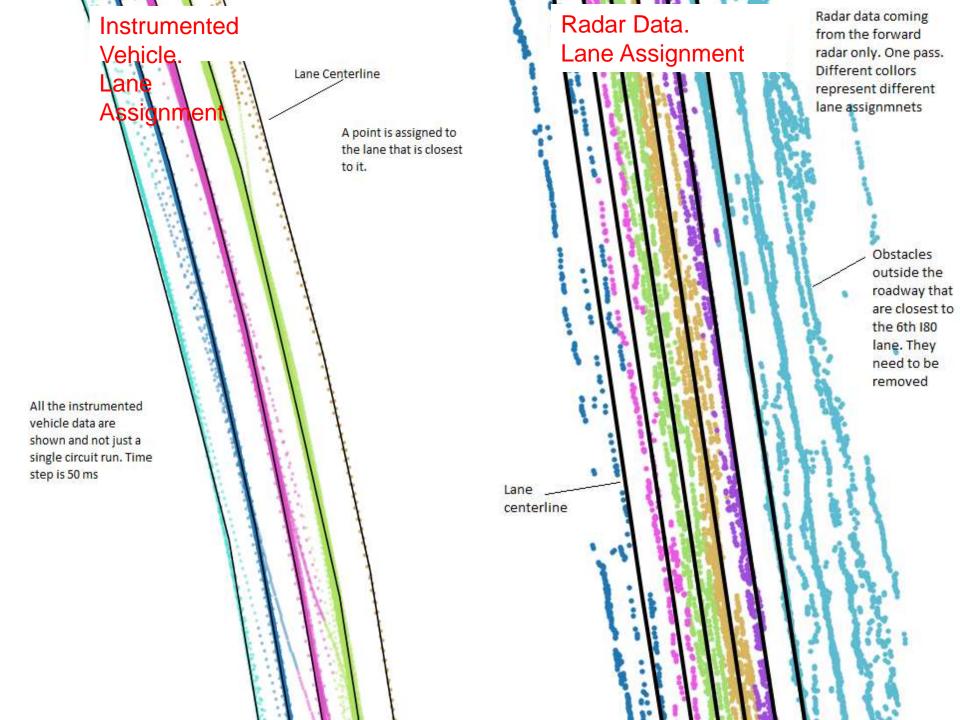
CAMBRIDGE SYSTEMATICS

Radar Data

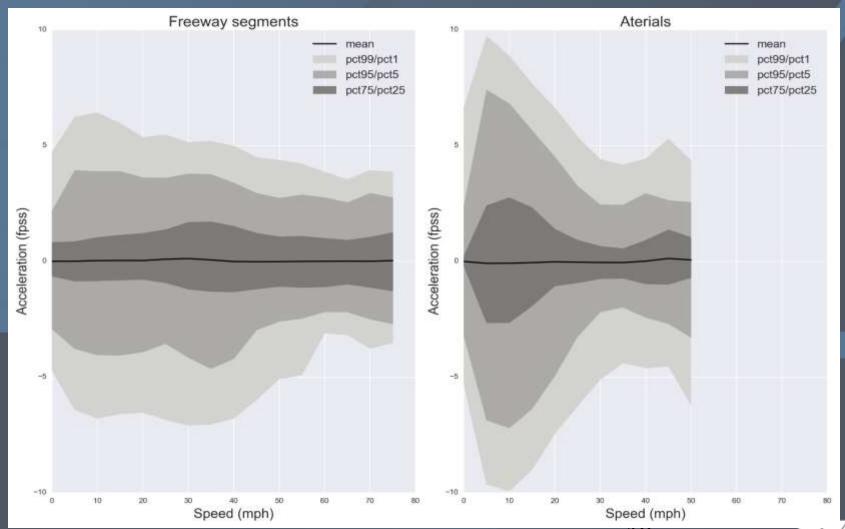
Trajectories Obtained From the Radars (sample)

I-80 & Powell


I-80 & Ashby



San Pablo



Radar Range and Angle (1/64 Tracks)

Acceleration vs Speed (Collected Data)

Lessons Learned

- Integrated GPS + Inertial Measurement Units are easy to work with
- Radars are not easy to configure
- Radar data require significant post-possessing due to false positives
- Initial design was to build one data acquisition system. Used three in the end
- Data come in asynchronously and not exactly every 50ms
- Low-level C code is required to ensure low latency

Microscopic Measures of driver behavior calculated at the trajectory level

Measure	Comments	Prime References or	
		Guidance	
Proximity & Safety			
Distance gap	Minimum distance between vehicles.	Surrogate Safety	
	Reveals collisions.	Assessment Model	
Time to collision	Quantifies risk of collision and	NHTSA ACAS Study, 100-	
	aggressive driving	Car Naturalistic Study	
Acceleration			
Acceleration range	Determines feasible vehicle dynamics	AASHTO, FMCA,	
	using ranges for physical and comfort	Collected data	
	limits.		
Acceleration noise	Characterizes smoothness of vehicle	Collected data,	
	movement.		
Acceleration jerk	Determines feasible vehicle dynamics		
	and characterizes traveler discomfort		
Lane Changing			
Urgency	Quantifies collision risk for same lane	NHTSA Naturalistic Lane	
	vehicles	Changes Study	
Severity	Quantifies impact (vehicle cut off) on	NHTSA Naturalistic Lane	
	adjacent lane	Changes Study	
Lane changes per mile	Driver propensity to change lanes	NHTSA Naturalistic Lane	
		Changes Study	
Lane change rate	Reveals lane changing intensity		
Microscopic Fundamental	Reveals dispersion around ideal traffic	Collected Data, NGSIM	
Diagram	flow theory assumptions		

Next Steps

- Clean and prepare the data for publication in the Research Data Exchange website
- Expand the microscopic measures presented
- Calculate microscopic measures using the collected trajectory data and publish findings

Questions?

Contact Information

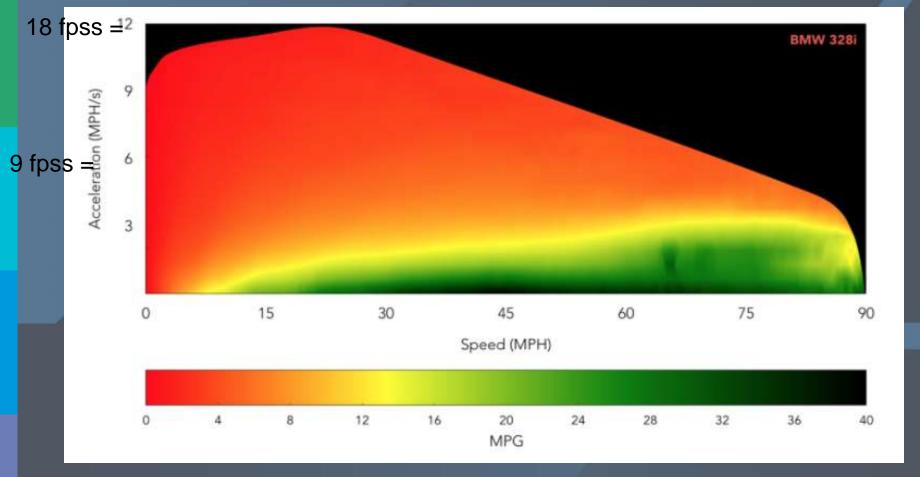
Michalis Xyntarakis

Contact No. 646 364 5495 email: mxyntarakis@camsys.com

Vassili Alexiadis

Contact No. 510 873 8700

email: valexiadis@camsys.com



Appendix

http://swdev14.camsys.com/shark/test/IVTrajectories.html

Acceleration vs Speed and Fuel Consumption

Source 1 https://blog.automatic.com/the-hidden-costs-of-aggressive-driving-7828a9742fdc#.fnsh9iira

26
CAMBRIDGE SYSTEMATIC