Using Innovative Data in Transportation Planning and Modeling

presented at

2014 Ground Transportation Technology Symposium: Big Data and Innovative Solutions for Safe, Efficient, and Sustainable Mobility

presented by

Cambridge Systematics, Inc.

Nikhil Puri

Outline

- Context need for good data
- Applications in transportation planning and modeling
- Benefits and limitations of using (big) data
- Potential applications

ContextNeed for Good Data

- Transportation sector accounts for 25% of total commercial energy worldwide (2001 United Nations report)
- Annual cost of traffic congestion in the U.S. – 100s of billions (\$124 billion recent study by INRIX and the Centre for Economics and Business Research)
- Key infrastructure decisions based on travel demand models
 - » Rely on (good) data

- Traditional data collection intercept origin-destination, tube counters, household travel surveys
 - » Still needed
- Innovative data collection sources – anonymized cell phones, GPS probes, aircraft, Bluetooth devices and toll plaza, General Transit Feed Specification (GTFS)
 - » Becoming more common
 - » Not without limitations

Applications in Transportation Planning and Modeling

Planning

- » Understanding O-D patterns, trip lengths, imputed trip purposes, external trip patterns
- » Performance measurement speeds
- » Travel behavior (infancy)

Model Applications

- » Macroscopic and microscopic models
- » Calibration/validation of models trip lengths, trip distribution patterns, trip purposes, speeds, counts

Central Florida Person Trips: 2014

Note: Derived from AirSage Data

Central Florida Region – Spatial Distribution of Daily Trips

Central Florida Region Spatial Distribution (Destination)

Temporal Distribution by Trip Purpose (Percentage & Absolute)

- o Over 40 percent of trips are Home Based Other Trips
- There is a large variation in Home Based Work trips between AM and PM periods
- Approximately 22 percent of trips occur during the AM
 peak, whereas 26 percent occur during the PM peak

Disney World Patronage

Interesting findings...

- Green boundary represents Disney
 World area
- Summation of daily non-home-based work trips 189K trips. In comparison, observed 2013 counts was in the order of 207K annual visitors

Select Link Analysis Using Cell Phone Data

- Used anonymized cell phone data (2012)
- Select link analysis on bridges (O-Ds on bridges)
- Findings
 - » Due to proximity of bridges, hard to distinguish which bridge traffic was on
 - » O-D patterns compared reasonably well at county level

Probe Speed Data

Heat map indicating congestion locations and time

Some Applications:

- Performance Measures
- Macro and micro transportation model validation
- Toll diversion modeling

Data tells us...

- Bottleneck location and severity
- Duration of congestion
- Extents of queues
- Free-flow conditions
- Issues: Overlapping TMC links

Example of overlapping TMC links

MTA (New York) BusTime® Data

Note: Not based on real data

- Approximately 6,000 buses throughout NYC
- 8 Million daily data points
- GPS bus data every 30 seconds
- Currently comparing data against GTFS for reliability statistics

Benefits and Limitations of Using (Big) Data

Benefits

- » Often larger sample sizes
- » Easily collected; archived data available
- » Often cheaper with wider coverage

- » Spatial accuracy (cell phone data)
- » Currently unable to gain additional insights on trip behavior characteristics such as mode
- » Accuracy may be susceptible to weather
- » Privacy concerns

Potential Applications

- Using trajectory data route choice behavior
- Transit ridership
- Performance measurement for transit operations
- Travel behavior during events
- Emergency response
- Airport usage
- Tourism

Contact Information

NIKHIL PURI

Cambridge Systematics npuri@camsys.com (646) 364-5491

