

Real-time Big-Data Management Architecture for Adaptive Traffic Signal Control

Presented by

Wuping Xin, PhD. P.E. CTO, KLD Engineering, P.C.

Elena Prassas Associate Professor, NYU-Poly

Agenda

- Background
- Big-Data Challenge
- System Development
- Implementation and Application

Background

- Adaptive Control in a Nutshell
 - The years of 1903, 1912, 1914, 1917, 1918
 - The 1920's-1930's witnessed introduction of fixed-time control and later actuated signal control
 - Major paradigm shift in the 1950's 1960's
 - Adaptive signal control, concepts, systems, and implementation

Background cont'd

- Sources of "big data" for real-time control
 - Conventional data collected at higher resolution
 - Cost-effective technology enables previously prohibitive data
 - Data originally intended for other domain application
 - Controller status, and log data
 - High-resolution event-based data
 - Low-cost traffic sensor network, with high-bandwidth communication
 - Crowd-sourced data

Other Multi-Source Data Other Multi-Source Data AWAM/GPS/RFID Crowd-Sourced Data ANPR Traff

Real World Infrastructure

Operator Terminals

Big Data Challenges

- <u>Acquire</u> Acquiring multi-source data (AWAM, RFID, traffic sensor data, controller status data etc.) involves accessing various data sources and retrieving the data using appropriate protocols.
- Integrate and Organize Heterogeneity in data formats, the different data transmission protocols, and the fact that new types of data keeps emerging
- Analyze and Action Historical and real-time time series analysis and low-latency action

Acquisition of Data

- Data source that publishes data in XML format via a public accessible HTTP URL (AWAM data, and other XML-based data);
- Data source that publishes data using Telnet protocol (RFID data);
- Data source that publishes data using the ACDSS
 Adaptive Control Web Service Interface (detector data, controller status data);

Integration, Analysis and Action

Data Fetcher Service

Complete Picture

Implementation and Sample Applications

Victory Blvd. - Staten Island

New York City

- Dense grid network
- >12000 intersections
- > 300 under real-time control
- Oversaturated
- > 500 RTMS sensors
- > 100 roadside EZ-Pass tag readers collecting large-scale per-trip travel time data (4.5 million records daily), from 8 million commuters

Big-Data for Real-time Control

- Level 1 Strategic Area Wide Control
 - Implemented by avenues
 - Rebalance traffic being delivered to the target control area
 - Real-time selection from a library of predesigned congestion management plans
- Level 2 Tactical Control
 - Implemented at critical intersections
 - Complimentary to Level 1 with splits dynamically optimized
 - Balance queuing and minimize the gridlock potential

Travel Time

Per-trip travel times are processed and analyzed, to derive measure of congestion levels

Level 1 Control

Trigger conditions based on real-time travel time data

Travel Time	Area Wide Control Plan	
2 Stops	Network Balancing Plan (NBP)	
3 Stops	Access Control 1 (AC1)	
3+ Stops	Access Control 2 (AC2)	

- NBP Simultaneous offset, minimal green tapering
- ► AC1 Simultaneous offset, increased green tapering
- ► AC2 Simultaneous offset, higher green tapering

Level 2 Control

- Robust queue control at critical intersections
 - A local congestion index called Severity Index (SI) is derived from flow/occupancy
 - Splits are dynamically optimized to minimize the grid lock potential

SI=1	Q < L/3
SI=2	L/3 < Q < 2L/3
SI=3	2L/3 < Q < 3L/4
SI=4	Q > 3L/4

Thank you

