

University Transportation Research Center - Region 2

Final Report

ELIMINATING TRUCKS ON ROOSEVELT ISLAND FOR THE COLLECTION OF WASTES

Performing Organization: University Transportation Research Center (UTRC), CCNY/CUNY

July 2013

Sponsor:

New York State Energy Research and Development Authority (NYSERDA)

University Transportation Research Center - Region 2

The Region 2 University Transportation Research Center (UTRC) is one of ten original University Transportation Centers established in 1987 by the U.S. Congress. These Centers were established with the recognition that transportation plays a key role in the nation's economy and the quality of life of its citizens. University faculty members provide a critical link in resolving our national and regional transportation problems while training the professionals who address our transportation systems and their customers on a daily basis.

The UTRC was established in order to support research, education and the transfer of technology in the field of transportation. The theme of the Center is "Planning and Managing Regional Transportation Systems in a Changing World." Presently, under the direction of Dr. Camille Kamga, the UTRC represents USDOT Region II, including New York, New Jersey, Puerto Rico and the U.S. Virgin Islands. Functioning as a consortium of twelve major Universities throughout the region, UTRC is located at the CUNY Institute for Transportation Systems at The City College of New York, the lead institution of the consortium. The Center, through its consortium, an Agency-Industry Council and its Director and Staff, supports research, education, and technology transfer under its theme. UTRC's three main goals are:

Research

The research program objectives are (1) to develop a theme based transportation research program that is responsive to the needs of regional transportation organizations and stakeholders, and (2) to conduct that program in cooperation with the partners. The program includes both studies that are identified with research partners of projects targeted to the theme, and targeted, short-term projects. The program develops competitive proposals, which are evaluated to insure the mostresponsive UTRC team conducts the work. The research program is responsive to the UTRC theme: "Planning and Managing Regional Transportation Systems in a Changing World." The complex transportation system of transit and infrastructure, and the rapidly changing environment impacts the nation's largest city and metropolitan area. The New York/New Jersey Metropolitan has over 19 million people, 600,000 businesses and 9 million workers. The Region's intermodal and multimodal systems must serve all customers and stakeholders within the region and globally. Under the current grant, the new research projects and the ongoing research projects concentrate the program efforts on the categories of Transportation Systems Performance and Information Infrastructure to provide needed services to the New Jersey Department of Transportation, New York City Department of Transportation, New York Metropolitan Transportation Council, New York State Department of Transportation, and the New York State Energy and Research Development Authority and others, all while enhancing the center's theme.

Education and Workforce Development

The modern professional must combine the technical skills of engineering and planning with knowledge of economics, environmental science, management, finance, and law as well as negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the web, and knowledgeable about advances in information technology. UTRC's education and training efforts provide a multidisciplinary program of course work and experiential learning to train students and provide advanced training or retraining of practitioners to plan and manage regional transportation systems. UTRC must meet the need to educate the undergraduate and graduate student with a foundation of transportation fundamentals that allows for solving complex problems in a world much more dynamic than even a decade ago. Simultaneously, the demand for continuing education is growing – either because of professional license requirements or because the workplace demands it – and provides the opportunity to combine State of Practice education with tailored ways of delivering content.

Technology Transfer

UTRC's Technology Transfer Program goes beyond what might be considered "traditional" technology transfer activities. Its main objectives are (1) to increase the awareness and level of information concerning transportation issues facing Region 2; (2) to improve the knowledge base and approach to problem solving of the region's transportation workforce, from those operating the systems to those at the most senior level of managing the system; and by doing so, to improve the overall professional capability of the transportation workforce; (3) to stimulate discussion and debate concerning the integration of new technologies into our culture, our work and our transportation systems; (4) to provide the more traditional but extremely important job of disseminating research and project reports, studies, analysis and use of tools to the education, research and practicing community both nationally and internationally; and (5) to provide unbiased information and testimony to decision-makers concerning regional transportation issues consistent with the UTRC theme.

NYSERDA Contract No: 21193

UTRC-RF Project No: 55819-00-01

Project Date: July, 2013

Project Title: Eliminating Trucks On Roosevelt Island For

The Collection Of Wastes

Principal Investigator:

Dr. Camille Kamga
Director, UTRC, Region 2
Associate Professor of Civil Engineering, CCNY/CUNY
Email: ckamga@utrc2.org

Project Managers:

Benjamin Miller UTRC Senior Research Associate Email: BMiller@utrc2.org

Juliette Spertus Consultant Email: juliette.spertus@gmail.com

Co-Authors/Research Associates: Lisa Douglass, Ph.D., Brian Ross

Project Coordinator: Penny Eickemeyer Email: peickemeyer@utrc2.org

Performing Organization: University Transportation Research Center (UTRC), CCNY/CUNY

Sponsor: New York State Energy Research and Development Authority (NYSERDA)

To request a hard copy of our final reports, please send us an email at utrc@utrc2.org

Mailing Address:

University Transportation Reserch Center The City College of New York Marshak Hall, Suite 910 160 Convent Avenue New York, NY 10031 Tel: 212-650-8051

Fax: 212-650-8374 Web: www.utrc2.org

Board of Directors

The UTRC Board of Directors consists of one or two members from each Consortium school (each school receives two votes regardless of the number of representatives on the board). The Center Director is an ex-officio member of the Board and The Center management team serves as staff to the Board.

City University of New York

Dr. Hongmian Gong - Geography Dr. Claire McKnight - Civil Engineering Dr. Neville A. Parker - Civil Engineering

Clarkson University

Dr. Kerop D. Janoyan - Civil Engineering

Columbia University

Dr. Raimondo Betti - Civil Engineering Dr. Elliott Sclar - Urban and Regional Planning

Cornell University

Dr. Huaizhu (Oliver) Gao - Civil Engineering Dr. Mark A. Turnquist - Civil Engineering

Hofstra University

Dr. Jean-Paul Rodrigue - Global Studies and Geography

New Jersey Institute of Technology

Dr. Steven Chien, Civil Engineering Dr. Priscilla P. Nelson - Geotechnical Engineering

New York University

Dr. Mitchell L. Moss - Urban Policy and Planning Dr. Rae Zimmerman - Planning and Public Administration

Polytechnic Institute of NYU

Dr. John C. Falcocchio - Civil Engineering Dr. Elena Prassas - Civil Engineering

Rensselaer Polytechnic Institute

Dr. José Holguín-Veras - Civil Engineering Dr. William "Al" Wallace - Systems Engineering

Rochester Institute of Technology

Dr. James Winebrake -Science, Technology, & Society/Public Policy

Rowan University

Dr. Yusuf Mehta - Civil Engineering Dr. Beena Sukumaran - Civil Engineering

Rutgers University

Dr. Robert Noland - Planning and Public Policy Dr. Kaan Ozbay - Civil Engineering

State University of New York

Michael M. Fancher - Nanoscience Dr. Catherine T. Lawson - City & Regional Planning Dr. Adel W. Sadek - Transportation Systems Engineering Dr. Shmuel Yahalom - Economics

Stevens Institute of Technology

Dr. Sophia Hassiotis - Civil Engineering Dr. Thomas H. Wakeman III - Civil Engineering

Syracuse University

Dr. Riyad S. Aboutaha - Civil Engineering Dr. O. Sam Salem - Construction Engineering and Management

The College of New Jersey

Dr. Michael Shenoda - Civil Engineering

University of Puerto Rico - Mayagüez

Dr. Ismael Pagán-Trinidad - Civil Engineering Dr. Didier M. Valdés-Díaz - Civil Engineering

UTRC Consortium Universities

The following universities/colleges are members of the UTRC consortium.

City University of New York (CUNY)
Clarkson University (Clarkson)
Columbia University (Columbia)
Cornell University (Cornell)
Hofstra University (Hofstra)
New Jersey Institute of Technology (NJIT)
New York University (NYU)

Polytechnic Institute of NYU (Poly) Rensselaer Polytechnic Institute (RPI) Rochester Institute of Technology (RIT)

Rochester Institute of Technology (RIT)
Rowan University (Rowan)

Rutgers University (Rutgers)
State University of New York (SUNY)
Stevens Institute of Technology (Stevens)
Syracuse University (SU)

The College of New Jersey (TCNJ)
University of Puerto Rico - Mayagüez (UPRM)

UTRC Key Staff

Dr. Camille Kamga: Director, UTRC Assistant Professor of Civil Engineering, CCNY

Dr. Robert E. Paaswell: *Director Emeritus of UTRC and Distin*guished Professor of Civil Engineering, The City College of New York

Dr. Claire McKnight: Assistant Director for Education and Training; Associate Professor of Civil Engineering, City College of New York

Herbert Levinson: UTRC Icon Mentor, Transportation Consultant and

Professor Emeritus of Transportation

Dr. Ellen Thorson: Senior Research Fellow, University Transportation Research Center

Penny Eickemeyer: Associate Director for Research, UTRC

Dr. Alison Conway: Associate Director for New Initiatives and Assistant Professor of Civil Engineering

Nadia Aslam: Assistant Director for Technology Transfer

Dr. Anil Yazici: Post-doc/ Senior Researcher

Nathalie Martinez: Research Associate

ELIMINATING TRUCKS ON ROOSEVELT ISLAND FOR THE COLLECTION OF WASTES

FEASIBILITY STUDY

Final Report

Prepared for

THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY

Albany, NY

Joseph Tario, P.E. Senior Project Manager

Prepared by

University Transportation Research Center, Region 2 New York, NY

Camille Kamga, Ph.D. Principal Investigator

Benjamin Miller Juliette Spertus Project Managers

Lisa Douglass, Ph.D. Brian Ross Research Associates

Penny Eickemeyer UTRC Coordinator

Project #21193

July 2013

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2.Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle			5. Report Date	
Eliminating Trucks On Roosevelt Island For The Collection Of W		astes	July 2013	
			6. Performing Organization	Code
7. Author(s)				
	. C I ' D l	D. J D	8. Performing Organization	Report No.
Camille Kamga, Benjamin Miller, Juliette Penny Eickemeyer	e Sperius, Lisa Douglass	, Brian Ross,		
Teminy Elekenieyer				
Performing Organization Name and Address			10. Work Unit No.	
University Transportation Research Center, R	egion 2		To. Work Clift 110.	
Marshak Hall - Suite 910	05.0n 2		11. Contract or Grant No.	
The City College of New York			NYSERDA Contract	
New York, NY 10031			UTRC-RF Grant No:	
12. Sponsoring Agency Name and Address New York State Energy Research and			13. Type of Report and Peri Final Report	od Covered
Development Authority (NYSERDA),			14. Sponsoring Agency Coo	Ja
17 Columbia Circle Albany, NY 12203			14. Sponsoring Agency Coo	
15. Supplementary Notes				
16. Abstract				
	og the officionary of the man	matic avatem that has been	used for collecting resi	dontial municipal calid
This study examined alternatives for improvir waste on Roosevelt Island, New York since				
streams (metal/glass/plastic; paper); and a fur	ther expansion of the system	m to include commercial ar	nd litter-bin waste. Thes	e three scenarios (plus
the No-Action alternative, representing a con alternative produced the greatest adverse ed				
scenarios offered advantages in terms of ser				
containers of pneumatically collected waster				
still required. The simple equipment upgrade included, overall truck miles would be reduced.				
the three pneumatic scenarios would decline				
pneumatic scenarios collect 8 times more of				
manual collection. Likewise, greenhouse gas emissions for pneumatic collection would be up to twice as high as for conventional collection. Since up to 90% of the energy demand for pneumatic systems may be supplied by electricity rather than diesel fuel, electricity generated by low-carbon				
	sources could reduce these greenhouse gas emissions. These pneumatic scenarios cost 10 to 25% less to operate, including the truck dray of			
containers from the pneumatic terminal to the long-haul transfer station, but when debt service for capital investments is included, overall				
operating costs for the pneumatic alternatives are 40 to 90% higher than for conventional collection. On a Net Present Value basis, this difference could be equalized if annual externality benefits on the order of \$255,000 to \$1,140,000 were realized. Given the value of potential savings by				
waste-generators (in space and labor costs) a				
pneumatic alternatives may achieve these leve	els of benefits.	· · · · · · · · · · · · · · · · · · ·		
17. Key Words		18. Distribution Statement		
pneumatic waste collection; municipal solid waste;	• •			
urban goods movement; solid waste management; le	ow-emission freight transport			
19. Security Classif (of this report)	20. Security Classif. (of this page	e)	21. No of Pages	22. Price
Unclassified	Unclassified			
	i			I

NOTICE

This report was prepared by the University Transportation Research Center, Region 2, in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority (hereafter "NYSERDA"). The opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, NYSERDA, the State of New York, and the contractor make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. NYSERDA, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.

ABSTRACT

This study examined alternatives for improving the efficiency of the pneumatic system that has been used for collecting residential municipal solid waste on Roosevelt Island, New York since 1975. Alternatives included a basic equipment upgrade; expansion to include separate recyclables streams (metal/glass/plastic: paper); and a further expansion of the system to include commercial and litter-bin waste. These three scenarios (plus the No-Action alternative, representing a continuation of the status-quo system) were compared to conventional truck collection. The No-Action alternative produced the greatest adverse economic and environmental impacts. Compared to conventional collection, all of the pneumatic scenarios offered advantages in terms of service frequency and reliability, labor and space requirements, and quality-of-life benefits. Because containers of pneumatically collected waste need to be drayed from the terminal to a transfer station or processing facility, some truck miles are still required. The simple equipment upgrade would generate 15% more truck miles than the conventional alternative, but when recyclables are included, overall truck miles would be reduced by 10%, and when commercial and litter-bin waste is included, by 70%, while diesel fuel use for the three pneumatic scenarios would decline by 10 to 90%. Since reductions in diesel fuel require increased use of electricity, and since the pneumatic scenarios collect 8 times more often, overall energy demand for these expanded systems would increase by 25% to 70% relative to manual collection. Likewise, greenhouse gas emissions for pneumatic collection would be up to twice as high as for conventional collection. Since up to 90% of the energy demand for pneumatic systems may be supplied by electricity rather than diesel fuel, electricity generated by low-carbon sources could reduce these greenhouse gas emissions. These pneumatic scenarios cost 10 to 25% less to operate, including the truck dray of containers from the pneumatic terminal to the long-haul transfer station, but when debt service for capital investments is included, overall operating costs for the pneumatic alternatives are 40 to 90% higher than for conventional collection. On a Net Present Value basis, this difference could be equalized if annual externality benefits on the order of \$255,000 to \$1,140,000 were realized. Given the value of potential savings by waste-generators (in space and labor costs) and of potentially monetizable public benefits (public-health and quality-of-life improvements), the pneumatic alternatives may achieve these levels of benefits.

Keywords: pneumatic waste collection; municipal solid waste; urban freight transport; urban goods movement; solid waste management; low-emission freight transport

[This page is purposely blank.]

The University Transportation Research Center, Region 2, acknowledges the significant engineering support made to this study by Envac, A.B., the current corporate form of the Swedish firm that installed the world's first pneumatic waste collection system (still in operation today) at a hospital in Solleftea, Sweden in 1961, as well as the systems still in operation on Roosevelt Island, New York City (1975) and in Jersey City, New Jersey (1972), and which has since developed hundreds of other systems throughout Europe, Asia, and North America. The research team would particularly like to recognize the technical contribution made by Albert Mateu, P.E., former Envac sales vice-president for the Americas and South Europe. We also acknowledge with appreciation the insightful review comments offered by Tammy Gamerman of the Citizens Budget Commission and Amy Marpman and Richard Fuller of Great Forest.

TABLE OF CONTENTS

Sec	<u>ction</u>	<u>Page</u>
SU	MMARY	S-1
1.	INTRODUCTION	1-1
The	e Problem	.1-1
Ba	ckground	. 1-3
	Pneumatic Tube Overview	1-3
	Pneumatic Tube Waste Collection Integrated into the Development of	
	Roosevelt Island as a Residential Community	. 1-7
	Literature Review	
	The 1970s and the First Pneumatic Waste Systems.	
	Recent General Literature on Pneumatic Tubes.	. 1-9
	Recent Literature Comparing the Costs, Environmental Impacts, and LCA of	
	Pneumatic Tubes to Conventional Collection	
Res	search Setting	1-13
2.	DATA COLLECTION	2-1
3	FINDINGS	3-1
Wa	iste Sources	
	Current Sources.	3-1
_	Future Sources.	-
En	vironmental and Management Impacts of Current Waste Handling	
	Impacts of Waste Not Handled by the AVAC System Impacts of Waste That Is Handled by the AVAC System	
	Quality-of-Life Impacts Due to Manual Handling of Waste That Does	3-3
	Not Enter the AVAC System	3-6
O	perational Preferences Assessment.	
-	n-Site Engineering Assessment.	
	osts of the No-AVAC Option.	
	000 01 000 110 120 0 production to the contract of the contrac	
4.	ALTERNATIVE SCENARIO DEVELOPMENT AND ANALYSIS	4-1
	sign Considerations	
Co	nceptual Engineering Designs	
_	RIOC Network	
	st, Energy Use, and Greenhouse Gas Emissions	
11110	egrated waste flocessing	.4-1/
5.	IMPLEMENTATION	5-1
6.	METRICS.	6-1
7.	CONCLUSIONS	7-1
BII	BLIOGRAPHY	. Bib-
ΑD	DENDICES	A 1

A.	DATA COLLECTION	A-1-1
1.	Waste Reconnaissance Report: Volumes, Types, Sources,	
	Impacts Reference Documents (Data)	A-1-1
2.	Field-Survey Components	A-2-1
3.	Survey Instruments	A-3-1
4.	Qualitative Assessment of Operational Preferences	A-4-1
5.	Recommendations in PlaNYC with Specific Relevance to Pneumatic Collection	A-5-1
В.	COST AND ENVIRONMENTAL CALCULATIONS	B-1-1

TABLES

<u>Table</u>		<u>Page</u>
1-1	System Cost Including Space Savings	1-12
1-2	Life-Cycle GHG Emissions from Pneumatic and Conventional System	1-12
4-1	Cost Comparison of Alternative Pneumatic Scenarios with Manual Collection	4-9
4-2	Cost Comparison of Alternative Pneumatic Scenarios with Manual Collection	4-10
4-3	Expected Waste Tonnage, Fuel, BTU, and GHG Reductions From	
	Metering/Unit Pricing with an Upgraded Pneumatic System	4-11
4-4	Annual Savings from Space Potentially Recoverable Through the Use of	
	Pneumatic Collection	4-11
4-5	Comparative Environmental Impacts.	4-12
B-1	Imputed Costs of Conventional Collection for Roosevelt Island	.B-1
B-2	Total System Impacts	
B-3	Pneumatic vs. Manual Energy Use and GHG Emissions	.B-3
B-3A	Sensitivity Analysis: Effect of Electricity on Energy Use and GHG Emissions,	
	Upgrade, & Upgrade, Recycling, Commercial & Litter	B-7
B-4	Pneumatic vs. Manual Mileage Factors	
B-5	PlaNYC (New York City-Specific) GHG Emission Coefficients	B-12
B-6	Pneumatic vs. Manual Potentially Achievable Waste-Generator Savings	.B-15
B-7	Review of Pneumatic vs. Manual Collection Literature	B-21
B-8	Pneumatic Operating Cost Calculation	B-23
B-9	Electricity Cost Calculation.	B-25
B-10	Pneumatic System Operating Cost Calculation.	B-26
B-10A	Sensitivity Analysis: Effect of Labor & Electricity on Operating	
	Cost Calculation, Upgrade Only	B-32
B-10B	Sensitivity Analysis: Effect of Labor & Electricity on Operating	
	Cost Calculation, Upgrade, Recycling, Commercial & Litter	B-33
B-11	Pneumatic v. Manual Net Present Value of Debt Service Calculation	B-34
B-12	Cost of Transport & Disposal of Refuse Pneumatic (Applying Volume	
	Reduction from "Save As You Throw" Program)	B-37
B-13	Annual Cost of Ro-Ro Collection from Roosevelt Island	B-38
B-14	Pneumatic Upgrade Container Calculation	B-39
B-15	Current Roosevelt Island DSNY Ro-Ro Collections	B-42

FIGURES

<u>Figure</u>		<u>Page</u>
1-1	Pipelines Have Replaced Trucks in New York City For Centuries	1-2
1-2	Roosevelt Island AVAC Operations Diagram	1-3
1-3	RI Cyclone-Separator	1-4
1-4	Base of RI Inlet Chutes, Diverter Valves in Closed Position	1-4
1-5	RI Turbine Exhausters.	
1-6	Roosevelt Island AVAC Terminal, Showing Roller Tracks and	
	Container Storage	1-5
1-7	Mobile Pneumatic System	
1-8	Schematic Stationary Pneumatic System Collecting 3 Fractions	
1-9	Three-Way Diverter Valve.	
1-10	Inlet Equipped with Magnetic Card-Reader.	
1-11	Roosevelt Island: A Planned "New Town in Town"	
1-12	Roosevelt Island: "No Traffic or Noise".	
3-1	Recyclables Next to an AVAC Inlet on Roosevelt Island	
3-2	Litter Bins on Roosevelt Island.	
3-3	Future Waste Sources.	
3-4	Locations of Potentially Accessible Additional Waste.	
3-5	Current On-Island Transport of Recyclables.	
3-6	Recoverable Exterior Space Currently Used For Waste Management	
3-7	DSNY Stationary Engineers Turn on Exhaust Fans and Open Diverter	
	Valves from Terminal Control Room	3-5
3-8	Current Waste Staging.	3-6
4-1	NYC's Policy Commitment to Source-Separated Organics	4-2
4-2	New Terminal Floor Plan Superposed Over Existing Facility	
4-3	Illustrative Residential Inlet Location Plan Indicating Relationship to	
	Building and Main Trunk Line	4-5
4-4	Section View: Residential Inlets	4-6
4-5	Comparison of Scenarios Considered Based on Waste Fractions and	
	Sources Handled	4-7
4-6	RIOC Network, Refuse Only	
4-7	RIOC Network, Refuse and Recycling.	
4-8	RIOC Network, Refuse, Recycling, Main Street Litter Bins and Businesses	
4-9	Comparison of Annual Truck Miles by Vehicle Type	
4-10	Comparative Energy Use of System Alternatives	
4-11	Comparative GHG Emissions of System Alternatives	
4-12	NYC's Remote Landfill Network	4-17

EXECUTIVE SUMMARY

Roosevelt Island is a planned community of 14,000 residents in the middle of the East River between Manhattan and Queens in New York City. Since it opened in 1975, its residential municipal solid waste (MSW) has been collected "auto-pneumatically" via a network of pneumatic tubes that extend under much of the Island. This automated vacuum ("AVAC") system has functioned reliably for the past 38 years. The quality-of-life benefits it provides--decreased traffic, noise, and aesthetic nuisances, for example--are generally highly appreciated by the Island's residents (to the extent that they are even aware that this nearly invisible system exists). But the AVAC system, one of the first full-scale pneumatic installations in the world, has not had its component parts replaced on an ongoing basis (as is the practice with some other pneumatic installations) and this original equipment is now reaching the end of its expected life. Maintenance costs are increasing. Its energy and labor demands are considerably greater than those of a digitally controlled, high-efficiency modern system. A rational management plan would suggest that it is time for an upgrade.

In 1975, New York City collected only one refuse "stream." New Yorkers called it "garbage." Now they are required to separate their metal, glass, and plastic from their other discards so that these materials can be collected as one separate stream, and their cardboard and mixed paper, so that they can be collected as another. On Roosevelt Island, these "source-separated" materials are handled as they are in the rest of New York City: the old-fashioned way, by truck. So are the wastes generated by the businesses that line the Island's narrow Main Street, the waste from its hospitals, and the material from its litter baskets. More discards will be produced by the residents of three new apartment towers that are planned but not-yet built, and by the thousands of students, staff, and visitors who will populate the two-million-square-foot university campus now being designed for the Island's southern end. If the AVAC system is upgraded, what would be the most rational overall plan for dealing with all of the wastes generated on the Island? Could these other materials also be collected auto-pneumatically, to further reduce truck traffic? Or would it be less expensive simply to shut down the antiquated AVAC plant and collect the Island's trash by truck? Which option--one of the pneumatic alternatives designed to handle some or all of the Island's waste streams, or conventional truck collection--would be most environmentally efficient, requiring the least energy and releasing the least greenhouse gas emissions?

These were the questions this study was designed to answer.

We found that it would be practicable to collect all of the waste materials generated on the Island autopneumatically, and that doing so would produce significant quality-of-life benefits (increased frequency
and reliability of waste collection, for instance) and environmental improvements (such as reduced traffic
congestion, noise, and air emissions). It might produce significant savings for waste generators--directly,
for building managers, and indirectly for their tenants--through reduced labor and space costs. It would
advance New York City's and New York State's goals of reducing the region's reliance on carbon-based
fuels by replacing them, in part, by electricity that could be generated from renewable resources.² And if
automated pneumatic collection were accompanied by automatic metering of the quantities of waste
introduced into the system, so that unit-based pricing could provide a financial incentive to reduce waste
generation and increase recycling, there could be a beneficial effect on the overall waste-management
system due to the reduced need for long-distance transport and disposal.

We found that the most practicable pneumatic solution would be separate (but coordinated) networks for the Island's residential population, for the university campus, and for the hospital. Each network would have its own pneumatic terminal.

_

¹ See interviews with Island residents in the video "Nature Abhors A Vacuum" http://fasttrash.org/exhibition/roosevelt-islands-avac/ accessed 01-31-13, and survey data in Appendix A. ² E.g., PlaNYC, "Energy," http://www.nyc.gov/html/planyc2030/html/theplan/energy.shtml, last accessed 01-27-13; Andrew M. Cuomo, State of the State Address, 01-09-13, https://www.governor.ny.gov/press/01092013sostranscript, accessed 01-27-13.

Any of the pneumatic-upgrade alternatives we considered would be considerably less expensive to operate than is the current AVAC system and would offer significantly greater environmental benefits. All of the pneumatic alternatives would also be less expensive to operate than would be a conventional truck-based system--not including the cost of debt service. When debt service is included--the initial costs of installing long-term infrastructure are relatively high, as New Yorkers discovered a century and a half ago when they first installed pipelines for supplying water and removing sewage--total operating costs are 40 to 90% higher than those of truck-based collection. The Net Present Value (NPV) costs of pneumatic and conventional collection could be balanced, however, if annual externality benefits on the order of \$255,000 to \$1,140,000 (depending on the number of fractions and waste sources included in the system) were achieved. Given the value of potential generator savings (space and labor) and of potentially monetizable public benefits (public-health and quality-of-life improvements) this may be possible.

Since pneumatic systems would still require trucks to move containers of refuse and recyclables from the AVAC terminal to off-Island transfer stations or processing facilities, overall truck miles would be reduced (relative to conventional collection) only in the pneumatic systems that included other waste streams in addition to residential refuse. In these pneumatic systems that also include recyclables, or recyclables and commercial and litter-bin waste, diesel-fuel use would decrease by 35% or 85%, respectively. Electricity would replace a portion of the energy that is supplied by diesel fuel in conventional collection, but because pneumatic systems collect waste multiple times per day, energy use is increased relative to low-frequency truck-based collection. Per-ton energy demand for the pneumatic systems (measured in British Thermal Units, BTUs) would be between 25% and 70% higher than for manual collection, depending on how many waste fractions are handled pneumatically. Total greenhouse gas (GHG) emissions would range from about 35% higher to twice as high as for manual collection, again depending on how many streams are pneumatically collected. Because the system is powered by electricity, low-carbon sources would reduce GHG emissions.

³ "NPV can be described as the "difference amount" between the sums of discounted cash inflows and cash outflows. It compares the present value of money today to the present value of money in the future, taking inflation and returns into account." http://en.wikipedia.org/wiki/Net_present_value, accessed 07-03-13.

⁴ Among the externalities that might be considered (but whose quantification was beyond the scope of this study) are such mileage-based impacts as pavement wear due to truck traffic, health effects of local particulate emissions from diesel engines, the cost to society of increased congestion and accidents, and reductions in health, productivity, and property value due to increased noise. Another category of impacts are those associated with the staging of waste for manual collection, such as rodents, odors, and visual nuisances.

Section 1

INTRODUCTION

THE PROBLEM

Urban solid waste management is a quintessential *local* problem. The heterogeneous discards of our cities are generated at the household and individual-business level, stored on-site in apartments and offices until they are removed to the street, collected from curbs or loading-docks by heavy-duty trucks, then driven over local streets to nearby materials-recovery, composting, waste-to-energy, or landfill facilities, or taken instead to local transfer stations at which they are reloaded onto other conveyances for long-hauls to distant disposal sites.

And yet, to the extent that waste-management issues are generally recognized to be of environmental and economic significance, this awareness tends to focus on "global" issues associated with resource depletion, air and water pollution, and global warming. The "last-mile" issues associated with waste disposal (which, in the US, generally means landfilling) are considered of paramount import; the production issues (resource extraction, depletion of non-renewable fossil fuels, impacts associated with metallurgical and petrochemical refining) receive somewhat less attention. But the "first-mile" issues—the widely dispersed local-level impacts that affect all urban dwellers most directly—are scarcely recognized. (Perhaps this is because municipal solid wastes are considered inert, like stationary potholes, and unlike moving currents of polluted air or water that transcend local boundaries, so that they are seen as being outside the purview of state or federal government, deserving instead the attention only of the lowest levels of local administration.) Most citizens--and their elected and appointed officials--thus fail to understand the highly consequential effects of waste *collection* on the overall waste-management system and on the entire urban environment

More specifically, the significance of the transportation component of waste management—waste as freight; the place of waste in urban goods-movement and passenger networks—is under-appreciated. And in this regard solid waste is once again an anomaly, since significantly more-efficient and less-environmentally-degrading systems have long been in place to meet other such elemental urban goods-movement needs. Sewers have been used to transport liquid wastes away from cities for almost as long as water pipes have been used to bring water into them. Gas and oil lines have long-since replaced rail or truck deliveries and are now as ubiquitous as any other kind of underground utility system for delivering electricity, steam, or information.

In addition to the obvious externalities associated with the way most of us currently store, stage, and ship off our solid wastes—adverse impacts that include wasted space, visual nuisances, odors, congestion, noise, diesel particulates, service interruptions due to snow storms and hurricanes, worker injuries, and rats—the way waste is collected has *direct* effects on the rate of energy use and on the volumes of GHG released into the atmosphere. It also has *indirect* effects on GHG emissions associated with landfilling, since truck-based collection of urban waste from multi-family buildings makes it difficult to charge individual apartment-dwellers on a unit basis (a system that has been widely documented to significantly reduce the volumes of waste requiring disposal⁶), difficult to collect source-separated organics for composting or anaerobic digestion, and more difficult to source-separate metal, glass, plastic, and paper for recycling.

⁵ Or is this relegation to the lowest levels of governmental attention, as has been suggested by anthropologist Mary Douglas, a reflection of the cultural blinders that limit our perception of daily matters associated with dirt? (*Purity and Danger: An Analysis of Concepts of Pollution and Taboo*, Psychology Press, 2002.)

⁶ Average reductions in generation for the U.S. (16-17%) are presented at: http://www.paytnow.org/PAYT_CO_faqpaytSERA_v6.pdf, 2008, accessed 12-14-12.

Figure 1-1. Pipelines in New York City Have Replaced Trucks for Centuries

(Source: sewerhistory.org)

An alternative to conventional truck-based collection systems is the pneumatic-tube technology that has been used in various European and Asian cities for the past fifty years—and on Roosevelt Island (RI), in New York City, since it opened as a New York State-managed residential housing complex in 1975.

When residents first began moving into Roosevelt Island's apartment towers, New York City did not yet require that recyclables be separated from other refuse. The waste generated by businesses on Roosevelt Island, like all other commercial waste in the city, was (and still is) picked up by private carters rather than by the municipal Department of Sanitation. Recyclables and commercial wastes, therefore, are handled manually, with conventional truck-based collection, rather than in the Island's automated vacuum system. Likewise, waste generated by the hospitals on the Island is collected by truck, as is the waste deposited in park and sidewalk litter baskets.

But in the decades since AVAC went into operation, technological advances now in use elsewhere allow source-separated fractions to be collected for recycling (via separate inlets that feed into the common trunk pipes on a pulsed basis) and allow waste inputs to be automatically measured for billing purposes (so that businesses—and, if so desired, residents—could be charged on a unit basis just as they now are by private carters). In addition, more-energy-efficient equipment and advances in digital control technology now allow the terminals to which the waste is pneumatically delivered to use less energy and less labor and to occupy a smaller footprint.

If the AVAC system could be upgraded to accept these waste streams that it does not currently handle, while taking advantage of the labor-, space-, and energy-saving technological advances of recent decades, the modernized Roosevelt Island system might produce a variety of economic, environmental, and quality-of-life benefits for the residents of Roosevelt Island, as well as more-generalized economic and environmental benefits for the rest of New York City.

What system-upgrade options might be physically, operationally, and economically feasible? What would be the costs and impacts of various system alternatives? What practicable form of system re-design might offer the most effective balance between overall costs and benefits—so that Roosevelt Island could again serve as a global model for sustainable waste-management practices?

This was the problem this project was designed to address.

⁷ Source: J. F. Springer, "Iron and Steel Sewer Pipe," *Municipal Engineering*, Volume LI, No. 3 (September 1916), p. 87.

⁸ Local Law 19 of 1989 mandated source-separation of two recyclable streams: metal/glass/plastic and mixed paper/old corrugated cardboard.

BACKGROUND

Pneumatic Tube Overview

Pneumatic collection systems use negative air pressure to pull solid waste through a network of pipes to a central collection point (terminal) where the waste is compacted and sealed into containers for transport to a processing or disposal facility.

Wastes are deposited into gravity-fed garbage chutes inside buildings, or into specialized exterior receptacles. The wastes collect inside the chute, or in a reservoir underneath the exterior receptacle, until the fans that produce the pneumatic vacuum are turned on and valves connecting the inlets to the pipe network are opened to release the accumulated waste into the airstream flowing into the terminal.

Pneumatic collection systems are designed to run automatically on a predetermined or as-needed schedule. Roosevelt Island's 40 operating inlets, for example, are opened 4 times a day 7 days a week 365 days a year. 9

HIGH RISE
STRUCTURE

SERVICE OPENING

REFUSE CHUTE

AIR FILTER

SERVICE OPENING

FLOOR MOUNTED
INPUT STATION

MATERIAL STORAGE
SECTION

OOMPRESSED AR

OLL-OWNERS

COMPACTING

EXHAUST BLOWERS

TRANSPORT PIPES

Figure 1-2. Roosevelt Island AVAC Operations Diagram (Source: Gibbs and Hill Engineers, 1971)

When the material reaches the terminal, it enters a cyclone-separator that sends the heavier-than-air waste spiraling down into a 40-cubic-yard compactor, while the air in which the waste was entrained rises into a fabric filter. The fabric filter removes dust and impurities before the air is circulated through the exhausters (on Roosevelt Island there are six 300-horsepower turbines, as shown in Figure 1-5) and then out through the stacks. The compacted waste is rammed into shipping containers, as shown in Figure 1-6.

¹⁰ This is pretty much the same principle by which any household vacuum cleaner operates: vacuum-cleaner bags are fabric filters. Note that only three turbines are used at a time.

1-3

⁹ Forty-four valves connect to Roosevelt Island's network but only 40 are in use. Phone conversation with NYC Dept. of Sanitation engineer Jerry Sorgente, 10-28-11.

Figure 1-3. RI Cyclone-Separator (left) and Dust Filter (lower right)

(Source: Milford, 2010)

Figure 1-4. Base of RI Inlet Chutes, Diverter Valves¹¹ (Source: Ross, 2011)

Once the compactor container is full, it is replaced by an empty container that is delivered by a bridge crane, roller-tracks, or other means. Roosevelt Island's facility can store up to 10 containers for transport.

¹¹ In the valve from 1975, shown on the left in the closed position, a horizontal plate slides open to allow the waste into the pneumatic network. The newer valve shown on the right (installed in 2003) is always sealed. A butterfly valve spins open within the tube to allow waste into the network.

Figure 1-5. RI Turbine-Exhausters

(Source: Milford, 2010)

Figure 1-6. RI AVAC Terminal, Showing Roller Tracks and Container Storage (Source: Milford, 2010)

There are two types of pneumatic networks: stationary systems with dedicated terminal facilities such as Roosevelt Island's and mobile systems (Figure 1-7). Mobile installations require a specialized vacuum truck to suction waste via docking stations that are connected to a pipe network. The vacuum truck, which can serve several networks, compacts the waste and transports it for treatment or disposal.

Both types of network can be used to collect multiple source-separated waste streams or fractions. A single trunk pipe can transport these various fractions by pulling them at different times from their separate collection tanks (as shown in Figure 1-8). A dedicated cyclone-separator and compactor-container, or in the case of a mobile system, a dedicated truck run, allows for the separate collection of each fraction. In stationary systems, a switching valve connects the trunk line to the appropriate cyclone-separator before each new fraction is collected (as shown in Figure 1-9).

Multi-fraction pneumatic systems require extra equipment and, since each separate pneumatic pull consumes additional energy, capital and operating costs are higher than for single-stream systems. The size of the terminal and the energy efficiency of the system depend on the length and geometry of the pipe network, the number of inlets connected to it, and the types and volumes of waste to be handled.

Figure 1-7. Mobile Pneumatic System

(Source: Kogler, 2007)

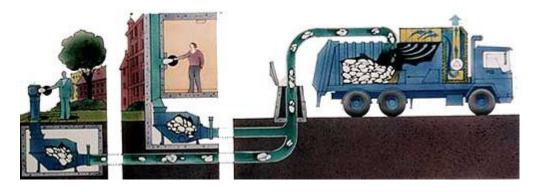


Figure 1-8. Schematic Stationary Pneumatic System Collecting 3 Fractions (Source: Envac, 2007)

Figure 1-9. Three-Way Diverter Valve

(Source: Kogler, 2007)

In installations built within the last decade or so, inlets are commonly equipped with key systems (magnetic cards with a unique identifier for each business or household) and with monitors that automatically register the volume of material introduced by the specific generator, or the number of times the generator accesses the inlet. This information can be used to automatically generate bills to be sent to each generator each month. In this way, at a relatively modest incremental cost, unit-based pricing systems can be integrated with pneumatic systems. Since it is otherwise relatively difficult to charge individual households in high-rise buildings based on the volume of waste they dispose of, and since unit-based pricing has been widely

demonstrated to produce significant reductions in the volumes of wastes set out for disposal, ¹² such metered inlets can provide a significant system-wide benefit.

Figure 1-10. Inlet Equipped with Magnetic Card-Reader

(Source: Envac, 2012)

<u>Pneumatic Tube Waste Collection Integrated Into the Development of Roosevelt Island as a Residential Community</u>

"The development of Welfare Island [renamed Roosevelt Island in 1973] is the first attempt in the United States to create for all income levels an urban environment where the primary consideration is the quality of the urban environment itself....When completed, the development will demonstrate that new approaches to the organization of public resources, which in turn lead to new approaches to planning and design, can restore to its inhabitants many of the lost pleasures of city life." ¹³

Figure 1-11. Roosevelt Island: A Planned "New Town in Town" (Source, NYS Urban Development Corporation, 1974)

The New York State Urban Development Corporation (UDC) planned a 20,000-resident "new town in town" as a model for a high-rise alternative to the suburbs that were drawing the middle-classes away from cities in the late 1960s. The master plan proposed a pedestrian neighborhood in which residents would leave their cars in a central parking garage and take electric shuttle buses along a single village "Main Street" lined with apartment buildings and surrounded by parks and water. Without cars and trucks to worry about, parents could let children could run freely.

¹² E.g., Kogler, "Waste Collection." ISWA Working Group on Collection and Transportation Technology, 2007. 61. http://www.iswa.org/uploads/tx_iswaknowledgebase/ctt_2007_2.pdf, last accessed 06-14-13.

¹³ New York State Urban Development Corporation & Welfare Island Development Corporation, *Welfare Island: An Interim Report*, 1970.

Figure 1-12. Roosevelt Island: "No Traffic or Noise"

(Source: New York Magazine, 1976)

Gibbs and Hill, the engineering firm responsible for infrastructure and transportation on the island, recommended the new pneumatic collection strategy because even containerized collection would require truck-accessible service areas and compacting stations that would be incompatible with the pedestrian orientation of the island. The engineers calculated that the pneumatic system would cost about the same as conventional collection, but without trucks the City's share of the costs would be cut in half. The 20-inch-diameter steel tubes for pneumatic collection were laid with the other service lines and the system was inaugurated as the first residents moved in in early 1975.

Literature Review

Literature on pneumatic collection of municipal waste falls into several categories: engineering and waste-management-policy articles in academic journals; consultant or vendor reports and recommendations to potential system owners; and municipal plans and regulations written by system owners.

The 1970s and the First Pneumatic Waste Systems. Engineering articles from the early 1970s describe the context in which the first pneumatic systems for municipal waste in the US, including Roosevelt Island's system, were built. Manufacturers targeted large-scale publicly funded urban-renewal and housing programs similar in scale to the European new towns, the satellite developments where the strategy was first implemented. With the shift to disposable packaging and the banning of in-building incinerators, waste management was becoming increasingly cumbersome for municipalities such as New York City, where labor costs were rising and the tax base was eroding. We are aware of three systems in the U.S. that are still in operation: Disney World (1971), Summit Plaza in Jersey City (1972)¹⁶ and Roosevelt Island (1975). The strategy is also mentioned in reference to several other contemporary projects, the status of

_

¹⁴ BT Kown/EA Kass of Gibbs & Hill Inc. 1973. "Put refuse in a pipe; let air do the work," *American City*, June 1973.

¹⁵ Bravo, Arthur C., "Environmental Systems at Walt Disney World." *Journal of the Environmental Engineering Division*, (December 1975): 887-95.

¹⁶ U.S. Department of Housing and Urban Development, *Feedback: Operation Breakthrough Phase 1 Planning and Design*. Report prepared by HUD Office of Policy Development and Research with RTKL Associates Inc., Washington DC: U.S. Government Printing Office, 1976.

which the study team has not ascertained. ¹⁷ A 1974 article reported that over a dozen hospitals had incorporated pneumatic collection of waste or soiled linens. ¹⁸

Recent General Literature on Pneumatic Tubes. Reports with recommendations for or against the installation of a pneumatic collection system by a developer or city agency highlight the importance of individual urban contexts in evaluating this technology. The 1972 report by Gibbs and Hill for Roosevelt Island recommended a pneumatic system to the Welfare Island Development Corporation as a means of avoiding the adverse environmental impacts associated with collection trucks. Other reports focus on the administrative issues. For example, a 2008 report by Toronto's deputy city manager explained that the City could not support a pneumatic-collection proposal for a major waterfront renewal project without an implementation plan "where the City is not the owner/operator after the pilot project is completed." A 2010 statement by the Traffic Administration in Stockholm, where the city's 400 pneumatic systems are owned by private developers, asked the City Council to retrofit the city center with a municipally owned system. In the Stockholm case, the primary motivation was worker safety in dense neighborhoods where storage areas in existing buildings did not meet current accessibility standards for waste handlers, and where making the modifications necessary to meet these standards was either impossible or costly. In Saudi Arabia, engineers recommended a pneumatic network for the pedestrian plazas around the Grand Mosque in Mecca to handle high waste volumes and reduce congestion during pilgrimages.

Administrative documents from cities that have publicly owned pneumatic systems offer useful implementation models. For example, Barcelona developed criteria that it used to produce a master plan for pneumatic collection; this plan designated all of the areas within the city to be served by pneumatic collection. ²³ City ordinances describe the responsibilities of property owners with respect to the portion of the system that extends onto private property. ²⁴ To ensure that networks built within the city meet technical

1-9

¹⁷ Dellaire mentions two projects in development: a housing complex in East Harlem developed by the East Harlem Redevelopment Corporation (system designed by ECI Air-Flyte) and the Empire State Plaza office complex and meeting center in Albany New York (system designed by Trans-Vac). Gene Dellaire, "Pneumatic waste collection on the rise." *Civil Engineering ASCE*, (August 1974): 83-4.

¹⁹ Gibbs & Hill Inc. 1970. "Research Study on Refuse Collection for Welfare Island for New York State Urban Development Corporation," September, 1970.

²⁰ Deputy City Manager, City of Toronto. 2008. "Vacuum Waste Collection Systems." March 19, 2008. Unpublished staff report. www.toronto.ca/legdocs/mmis/2008/ex/.../backgroundfile-11780.pdf, accessed 07-18-12.

²¹ "Service Statement C. No. E2008-702-01621, C. No. T2008-702-02200, Authority for vacuum systems for waste. Response to commission from the City Development Committee and the Traffic and Waste Management Committee, dated October 2008," City Development Administration Traffic Administration, p.2. http://fasttrash.org/library/archival-materials/ Reproduced by permission from the Traffic Administration of Stockholm, accessed 07-18-12.

²² Al-Ghamdi, Abdullah Saeed and Abu-Rizaiza, Asad Seraj, "Report: Pipeline transport of solid waste in the Grand Holy Mosque in Makkah." *Waste Management & Research* 1, no. 5, (October 2003): 474-9. (This 600-ton-per-day pneumatic project, the largest in the world, is currently under construction. It is expected to open in 2013. The technology-provider is MariMatic.

http://www.finlandtimes.fi/business/2013/02/18/358/MariMatic-to-build-wastepipe-system-in-Mecca; http://www.metrotaifun.com/automatic_solid_waste_collection_system/index.php/en/news-media/metrotaifun-news-and-media/8-news/26-marimatic-2011-11-08-marimatic-oy-delivers-to-saudiarabia-world-s-largest-automatic-solid-waste-collection-system-awcs, accessed 06-05-13.)

²³ "Pla Tècnic 2006 de Recollida Pneumàtica de Residus: Avanç Econòmic," Clabsa and Ajuntament de Barcelona, 2006. http://fasttrash.org/library/archival-materials/, accessed 07-18-13. http://w110.bcn.cat/portal/site/MediAmbient/menuitem.37ea1e76b6660e13e9c5e9c5a2ef8a0c/?vgnextoid=a94b25921cd1a210VgnVCM10000074fea8c0RCRD&vgnextchannel=a94b25921cd1a210VgnVCM10000074fea8c0RCRD&lang=en GB, accessed 07-18-13.

²⁴ "Ordenanza general del medio ambiente urbano de Barcelona (OMA)" Chapter 3 Article 63-6 "Recogida neumática," Chapter 4. Condiciones de los edificios y locales Article 64-2 "Edificios con sistema neumático" Ajuntament de Barcelona.

standards and are properly documented, Barcelona developed its own design specifications for pneumatic collection.²⁵

Recent Literature Comparing the Costs, Environmental Impacts, and Life Cycle Assessment of Pneumatic Tubes to Conventional Collection. Several recent studies compare pneumatic and conventional collection along a number of dimensions. These studies show a fair degree of similarity in their findings.

Jackson presents a variety of environmental, public-health, and quality-of-life arguments in favor of pneumatic vs. conventional collection. He acknowledges the high capital costs of pneumatic systems relative to truck-based collection and recommends "[c]ontinued research into the development of low-cost, wear-resistant composite pipe materials...As improvements are achieved in the durability, workability, and manufacturing of various pipe materials, further reductions will in turn be realized in both the initial construction and long-term-maintenance costs for pneumatic waste collection systems; Thus [sic] making them less cost prohibitive and more attractive." Other researchers comparing these systems also point to the role of the steel pipe in the overall economic and environmental costs of pneumatic systems.

Kogler focuses on the reductions in traffic congestion, worker accidents, exposure to pathogens and other sanitary hazards, noise (a one-quarter reduction in levels, a two-thirds reduction in duration), animal and insect pests, and odors, while documenting the relatively high capital costs of such systems ("nearly twice as high as traditional waste collection"). He notes, however, that these initial costs may be recovered: in addition to relatively modest operational savings (on the order of 20%), there could be savings of over 80% from renting out ground-floor space that conventional systems require for waste storage and handling, producing a net annual savings from pneumatic collection of over 25%.²⁷

Three recent studies, a pair of parallel studies by Teerioja et al. and Punkkinen et al.,²⁸ and a study by Iriarte et al.,²⁹ compare the relative GHG emissions and other environmental impacts of hypothetical pneumatic collection systems with those of conventional collection, adding these factors to the analysis of direct capital and operating costs. The Teerioja and Punkkinen studies consider a four-fraction terminal-based pneumatic system, while Iriarte evaluates a mobile system using vacuum trucks. These studies use Life Cycle Assessment (LCA) to compare total greenhouse emissions and other environmental impacts. Impacts associated with the manufacture and installation of all of system components (in the case of pneumatic collection: steel pipe, mechanical equipment, buildings) are added to those from operations

http://w3.bcn.es/V04/Serveis/Ordenances/Controladors/V04CercaOrdenances_Ctl/0,3118,200713899_2007 26005 2 169473778,00.html?accio=detall, accessed 07-27-12.

 $http://www.clabsa.es/PDF/RECOLLIDA_PNEUMATICA/PLEC_ESPECIFICACIONS.pdf,\ accessed\ 07-27-13.$

²⁵ Ajuntament de Barcelona and Clabsa. "Plec d'Especificacions per a Installacions de Recollida Pneumàtica a l'Interior dels Edificis."

²⁶ Stephen B. Jackson, "An In-Depth Report on the Development, Advancement, and Implementation of Pneumatic Waste Collection Systems and A Proposed Program for the Practical Evaluation of such a System in Terms of Waste Disposal Parameters, Engineering Design, and Economic Costs," 2004, pp. 28, 30; http://www.dtic.mil/dtic/tr/fulltext/u2/a471879.pdf, accessed 12-27-12. Note that his report assumes a system handling 100 tons a day, which is well above the demonstrated capacity of any system known to us, and an economic break-even point of 7 years, which is similarly unsupported by any experience of which we are aware.

²⁷ Kogler, op. cit.

²⁸ Nea Teerioja, Katja Molia, Evelliina Kuvaja, Markku Ollikainen, Henna Punkkinen, Elina Merta, "Pneumatic vs. door-to-door waste collection systems in existing urban areas: a comparison of economic performance" *Waste Management*, Volume 32, Issue 10, October 2012, Pages 1782-1791; Henna Punkkinen, Elina Merta, Nea Teerioja, Katja Moliis, Evelliina Kuvaja, "Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system," *Waste Management*, Volume 32, Issue 10, October 2012, Pages 1775-1781.

²⁹ Alfredo Iriarte, Xavier Gabarrell, Joan Rieradevall, "LCA of selective waste collection systems in dense urban areas," *Waste Management*, 29 (2009) 903-014.

(manufacture and consumption of fuels including electricity, maintenance, etc.) to assess the strategy's overall environmental impact.

In her base case--a pneumatic system handling just 5.3 tonnes/day, which is below the tonnage volume commonly thought to be economically practical--Teerioja found that capital expenditures for pneumatic collection were 10.4 times greater than those for conventional systems, and overall costs 5.6 times greater. But when the assumed tonnage was increased to 21.2 tonnes/day--since (unlike with conventional collection) fixed costs do not increase with additional tonnage--the overall cost differential decreased to 2.6 times more than conventional collection. Teerioja also found that "Environmental Costs" (these primarily reflect GHG emissions in the form of the costs of carbon dioxide equivalents [CO2-eq]) were 2.5 times higher for pneumatic than for conventional collection.

Teerioja notes that in addition to the unquantified (and undocumented, but probable) benefits due to "social aspects" ("Whether and how much the pneumatic system could reduce the possible negative amenity effects of the prevailing system, such as congestion, noise, and odor, and whether their economic value is crucial for the analysis, are questions that are left for future research."), the economic equation might well be reversed in situations where the value of land freed up by pneumatic collection from waste use can be taken advantage of, especially in areas where land values are high. Finally, Teerioja emphasizes that her findings pertain only to retrofit installations in existing developments. For pneumatic installations in new complexes, cost differences are likely to be less for three reasons: first (as is the case in New York City, due to the recent passage of Local Law 60 of 2012, which designates the minimum amount of space that must be set aside in residential buildings for recyclable storage), because "in new residential areas, the costs of traditional waste collection increase due to modern requirements with regard to, for example, larger and more convenient waste sheds [i.e., waste rooms];" second, the cost of installation is lower in new construction; and third, "the saved space from waste collection activities can be easily put to alternative, more efficient uses."

Teerioja does not mention other likely savings on the pneumatic side of the equation that could accrue from rationalization of the system design and operating conditions. For example, depending on the value of land in the neighborhood Teerioja analyzed, a subterranean terminal in one of the immediately adjacent parks (as have been installed in Stockholm, for example) could have produced both real-estate savings and capital and operating savings over the costs associated with her hypothesized more-distant terminal location. Teerioja et al. might also have included a calculation of the economic and environmental benefits that could be expected from the volume-based pricing systems which "pneumatic systems enable" and which, they note, have been shown to be "efficient in reducing MSW generation."

Punkkinen examined in greater detail the carbon dioxide-equivalent (CO2-eq) emissions from the same hypothetical stationary pneumatic installation in the same central-Helsinki already-developed neighborhood that Teerioja et al. had considered. She found that these per-tonne emissions, overall, were 3.2 times higher for pneumatic collection than for conventional collection. But while the relative emissions from the collection-and-transport component were only 2.2 times higher for the pneumatic system, the emissions from the manufacture of the fixed system components were 11.2 times higher than those for the "manufacture of waste containers"--the only conventional-system equipment component considered in her comparison. Given the major influence of the manufacture of the pneumatic system's long-lived steel (and cement) components, it is a striking omission on Punkkinen's part not to have included the GHG emissions associated with the manufacture and disposal of the major (primarily steel) components of the conventional system: short-lived (say 7 years) heavy-duty compactor trucks. Nonetheless, given the magnitude of the emissions associated with the steel pipes alone, it is unlikely that the parallel inclusion of the manufacturing and disposal impacts associated with conventional collection equipment would have significantly changed the relative magnitudes of the respective impacts.³² Another infrastructural factor not included on the

_

³⁰ Teerioja et. al., 2012, p. 1790.

³¹ Pp. 9-10.

³² Extrapolating from data published by the National Research Council of the National Academies (*Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use*), adding the impacts of truck production and disposal to the equation might increase CO2-equivalent GHG emissions of conventional

conventional side of the equation were the costs and emissions associated with the replacement of asphalt, concrete, and steel due to the more-frequent reconstruction of roads and bridges necessitated by the additional miles traveled by heavy-duty compactor trucks.

Iriarte et al. also found higher overall costs, GHG emissions, and BTU use when a mobile-pneumatic system was compared to conventional collection. In this study, however, a significant component of the relatively high BTU and GHG figures was the relatively low loading capacity of the mobile pneumatic equipment vs. the high load capacity of conventional trucks. Increased mobile loading capacity would significantly reduce the differential between the two types of systems.

Eisted et al. also compare GHG emissions associated with pneumatic collection to those from conventional systems. They find that emissions from different systems vary greatly, depending on material densities, compaction rates, and transport distances, but that pneumatic systems may produce emissions an order of magnitude higher than those from truck-based collection.³³

Comparative findings from these studies are summarized in Tables 1-1 and 1-2. Table 1-1 compares Kogler's Stockholm example with projected costs from two hypothetical New York City systems.³⁴

Table 1-1. System Cost Including Space Savings (Source: Kogler, 2007; Kamga, 2013)

Relative Space Costs (Annual)	Conventional	Pneumatic	Multiplier
Sodra Station, Stockholm, Per Apartment	€ 104	€ 18	0.17
High Line/Chelsea Market, Total	\$378,000	\$194,500	0.51
SAS/Second Avenue 92nd-99th Streets	\$4,731,974	\$81,900	0.02

Table 1-2. Life-Cycle GHG Emissions from Pneumatic and Conventional Systems (Source: Punkkinen, 2012; Eisted, 2009)

CO2-eq (kg/tonne)	Manual	Pneumatic	Ratio, P/M
Manufacture	1.86	20.74	11.2
Collection + Transport	16	35.66	2.2
Total (Helsinki)	17.86	56.4	3.2
Total (Copenhagen)	7.9	47.3	6.0

collection by about half, so that there would still be a disparity of nearly two to one in favor of the conventional system. Studies that have included the GHG emissions from the production of trucks and other equipment, and from the construction of roadway infrastructure, in the calculation of net GHG emissions associated with freight transport in general have found that these factors contribute between 5% and 30% to this total (M. Spielmann and R. W. Scholz, "Life cycle inventories of transport services-background data for freight transport, The EcoInvent Database," *International Journal on Life Cycle Assessment,* (2005), 10, 85-94; C. Facanha and A. Horvath, "Evaluation of life-cycle air emission factors of freight transportation," *Environmental Science & Technology,* (2007), 41, 7138-44; both cited in Rasmus Eisted, et al., "Collection, transfer and transport of waste: accounting of greenhouse gases and global warming contribution," *Waste Management & Research* (2009), 27: 738-45.)

33 Rasmus Eisted, Anna W. Larsen and Thomas H. Christensen, "Collection, transfer and transport of

³³ Rasmus Eisted, Anna W. Larsen and Thomas H. Christensen, "Collection, transfer and transport of waste: accounting of greenhouse gases and global warming," *Waste Management & Research*, 2009: 27: 738-745.

³⁴ C. Kamga, B. Miller, and J. Spertus, "A Study of the Feasibility of Pneumatic Transport of Municipal Solid Waste and Recyclables in Manhattan Using Existing Transportation Infrastructure," July, 2013. A feasibility study for the New York State Energy Research and Development Authority prepared by the University Transportation Research Center, Region 2.

RESEARCH SETTING

Roosevelt Island, New York is a full-service community on a skinny, 2-mile-long island in the East River between Manhattan and Queens. It has a current estimated population of 13,935 residents living in 4,353 apartment units³⁵ and 2,000³⁶ hospital patients living in two hospital complexes, one of which will be closed within the next few years. The residents live in 16 high-rise apartment complexes³⁷ that tower on either side of the single narrow street that runs north-south along the Island's spine. Although all the residents live in towers, the population density for the Island overall is a relatively modest 95 people per acre (23,500 people/km²; 60,900 people/mi²) since two-thirds of the 147-acre (.59 km²) island is reserved for open space. Forty-two shops and restaurants serve the community. 38 The Island's main employers are the long-term-care hospital and the public-benefit corporation that runs the Island for New York State, the Roosevelt Island Operating Corporation (RIOC).

Over the next 25 years the Island will see substantial increases in population and commercial activity. Planned future development includes 3 residential towers (800 units) and a 2-million-square-foot university campus for applied engineering which is scheduled to be completed in phases over the next 25 years. The first phase, adding 800,000 square feet of academic research, residential, and hotel and conference space, is expected to open in 2017. At completion, the campus will bring 2,200 residential units and 450 hotel rooms to the Island. All together the size of the community will grow by 3,000 residential units--to 7,600 in total--and the density will increase to 133 people/acre. ³⁹ The new campus will also add 500 parking spaces, doubling the current number. 40 The Franklin D. Roosevelt Four Freedoms Park, which opened in October, 2012, 41 is expected to draw well over 150,000 visitors per year. 42

Since 1975, when it opened, the AVAC system has been operated under a joint agreement between RIOC and the City of New York. RIOC, which owns the facility, paid the capital cost of building the plant and is responsible for paying for equipment maintenance and replacement. The New York Department of Sanitation (DSNY) operates the facility, supplying the personnel and paying for the electricity to run the

http://www.correctionhistory.org/rooseveltisland/html/rooseveltislandtour_garage.html, accessed 6-12. The existing 500 spaces beyond those at the end of the bridge are: Octagon, 260,

www.rioc.com/pdf/octagon-section7.pdf, accessed 06-30-12, plus 250 on-street parking spaces, http://americancity.org/daily/entry/feeding-the-hungry-parking-meter, accessed 6-30-12.

³⁵ Roosevelt Island had 9,520 residents according to the 2000 census and an additional 1,705 units built since. At NYC average 2.59 people/household the additional units= 4,415 people, for a total of 13,935. 14,000 is used by several news sources: http://www.wnyc.org/articles/wnyc-news/2012/feb/16/rooseveltisland-feature/; http://www.nytimes.com/2012/05/02/realestate/commercial/roosevelt-island-to-upgradeshopping-strip.html?pagewanted=all, last accessed 06-14-13

http://www.nyc.gov/html/hhc/html/facilities/colergoldwater.shtml, accessed 06-30-12.

³⁷ Building count: Octagon 1, Manhattan Park 5, Westview 1, Island House 1, Rivercross 1, Roosevelt landings (Eastwood) 1, Riverwalk 6

³⁸ http://www.dnainfo.com/new-york/20120420/upper-east-side/new-shops-coming-roosevelt-islandssleepy-main-street 34 on Main Street plus 8 retail spaces in Southtown. FYI: Currently more than 1/4 of the 34 on Main Street are vacant. http://www.hudsoninc.com/roosevelt-island-gains-favor-as-residentialspot/#more-741, accessed 06-30-12.

^{7,600} units * 2.59=19,684/147 acres

⁴⁰ Scoping document: 12DME004M_Draft_Scope.pdf

[.]http://www.nyc.gov/html/oec/html/ceqr/12dme004m.shtml, accessed 06-30-12. This calculation of parking spaces for cars traveling around the Island does not including the 1700 spaces in the Motorgate garage, at the western end of the Roosevelt Island Bridge.

⁴¹ http://www.fdrfourfreedomspark.org/about, accessed 06--30-12.

⁴² FDR Park-EAF; SEQRA Reports 2009-05-12.pdf p24. After 6 months of operation officials project far more than 150,000 visitors. The Island Voice blog, April 22, 2013. http://www.10044.com/content/view/144/, accessed 06-14-13.

system, and draying filled waste containers from the terminal off the Island to a long-haul transfer station in Queens.

Section 2 DATA COLLECTION

To develop the data necessary to devise alternative potentially practicable scenarios for managing Roosevelt Island's waste via pneumatic collection, the research team conducted an initial reconnaissance of Roosevelt Island's current waste management systems. The team collected relevant data from all available public and private sources and conducted field surveys to fill in remaining data gaps. The primary goals of the initial reconnaissance were to discover

- 1. how much waste is being handled by the AVAC system, at what cost, and with what impacts;
- 2. how much waste, of what types and from what sources, is being handled by conventional (manual-truck) means, at what cost and with what impacts; and
- 3. how much waste, of what types and from what sources, is projected to be associated with planned developments on the Island.

To these ends, the research team collected data from the Roosevelt Island Operating Corporation, the Department of Sanitation, the Coler Hospital, Four Freedoms Park, Cornell University, and confidential private-carting industry sources; conducted a field survey of all businesses on the Island, which included interviews as well as visual observation; conducted a field survey of all residential buildings on the Island, which included interviews with building managers and maintenance staff and tours of their buildings; conducted a ground survey of the Island to map the location of all litter bins; and used a variety of proprietary commercial databases and other resources to assemble as complete an inventory of waste volumes, types, and related impacts as was practicable.

These data were the basis for developing detailed engineering recommendations for both near-term and long-term options for improving the operation of the AVAC system. The team assessed the costs and environmental impacts of three improvement scenarios in order to provide RIOC with a firm basis for making decisions that could reduce costs, provide environmental benefits, and improve the quality of life not only on the Island but beyond its shores.

The field-data component included:

- 1. a survey of businesses
- 2. mapping and photographing all litter bins
- 3. observational visits to all residential buildings and interviews with staff
- 4. a survey and assessment of residents' operational preferences
- 5. an observational tour of RIOC's waste collection on streets and in parks
- 6. an engineering survey to assess the current state of the existing AVAC system

A detailed description of each of these components is presented in Appendix A, along with the survey instruments and raw data.

All engineering and operational data for the pneumatic alternatives were provided by Envac, A.B., the firm that built the original Roosevelt Island system. It has since installed hundreds of other pneumatic waste-collection facilities, primarily in Europe and Asia.

Section 3 FINDINGS

WASTE SOURCES

Current Sources

AVAC currently handles only trash from residential buildings: 5.8 tons per day (tpd).⁴³ These other materials could potentially be managed by an upgraded system:

• Residential recyclables: 2.62 tpd (1.59 tpd cardboard/paper; 1.03 tpd metal/glass/plastic).

Figure 3-1. Recyclables Next to an AVAC Inlet on Roosevelt Island (Source: Douglass, 2011)

- Hospital waste (non-hazardous): 11.89 tpd (8.57 tpd refuse; 3.32 tpd recyclables)
- Business waste: 4.7 tpd (2.8 tpd refuse; 1.2 tpd compostables; 0.7 tpd recyclables)
- RIOC facilities: 0.1 tpd (refuse and recyclables combined)
- Street and park litter bins: 0.2 tpd (0.1 tpd refuse; 0.09 tpd recyclables)

Figure 3-2. Photo and Geographic Documentation of Litter Bins on Roosevelt Island (Source: Ross, 2011)

⁴³ Note that throughout this document, "per day" means for each of the 365 days a year—not "per weekday" or "per working day."

There are 172 litter bins on the Island, of 21 different kinds.

In total, 19.51 additional tons currently generated on the Island could be accessible to an upgraded system.

In addition, 1.6 tpd of residential compost, which is currently handled by AVAC, could be managed as a separate fraction if the upgraded system had separate inlets for organics.⁴⁴

Future Sources

Planned additions to the Island include three apartment towers with 795 residential units and ground-level retail, which are being developed by the Hudson Companies in its Southtown complex; a 2-million-square-foot campus complex that is being developed by Cornell and Technion Universities; and the FDR Four Freedoms Park, which is being developed by a non-profit corporation.

• Future Southtown buildings: 2.14 tpd (1.53 tpd refuse; 0.61 tpd recyclables)

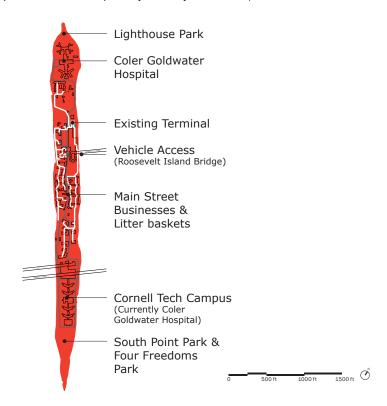
Cornell/Technion campus: 8.3 tpd⁴⁵

• Four Freedoms Park: 0.2 tpd

With all the current and future sources combined, 35.95 tpd could potentially be handled pneumatically (25.31 tpd current; 10.64 tpd future).

Figure 3-3. Future Waste Sources: Four Freedoms Park; Southtown: Riverwalk; Cornell-Technion

(Source: FDR Four Freedoms Park, 2011; Riverwalk, 2010; SOM, 2011)



⁴⁴ See Appendix A for details on all data presented in Section 2.

⁴⁵ Cornell NYC Tech, Draft Environmental Impact Statement, Chapter 12, Solid Waste, October, 2012, http://www.nycedc.com/sites/default/files/filemanager/Projects/Applied_Sciences_NYC/DEIS_PDFs/12D ME004M DEIS 12 Solid Waste.pdf, accessed 6-11-13.

Figure 3-4. Locations of Potentially Accessible Additional Waste

(Source: Spertus, 2013; Map: Project Projects, 2010)

ENVIRONMENTAL AND MANAGEMENT IMPACTS OF CURRENT WASTE HANDLING⁴⁶

Impacts of Waste Not Handled by AVAC⁴⁷

The current system for managing those wastes that are not collected by AVAC involves the same basic method used since the beginning of the 20th century: manual staging and loading of waste into motorized, gasoline- or diesel-burning vehicles for transport to a transfer or disposal site.

Current manual-and-truck collection produces a range of adverse economic and environmental impacts, in addition to negative quality-of-life and public-health impacts. These include GHG emissions, fuel use, and labor and space costs.

GHG emissions: 0.3 tpd

• Fuel use: 27 gal/day

_

 ⁴⁶ Impacts of current waste handling are in 2011 dollars unless otherwise noted. Projected impacts in Section 4 are inflated to 2013 dollars.
 ⁴⁷ Waste from Coler Hospital is included in the inventory of impacts from current manual waste handling

⁴⁷ Waste from Coler Hospital is included in the inventory of impacts from current manual waste handling listed below, but is not included in the scenarios presented later in the report because the study team assumed that it would be treated separately. (Waste from the Goldwater campus is not included anywhere because it will be closed soon).

Figure 3-5. Current On-Island Transport of Recyclables

(Source: Douglass, 2011)

- Labor time expended by building management company, business and RIOC employees: 71+ hours/day (as reported by individuals surveyed: residential, 53 hrs/day; commercial, 9; litter bins/parks, 8; RIOC facilities, 1)). Time expended by residents sorting or carrying materials from their apartments to their hallway waste closets is not included in this tabulation. Nor is time spent by DSNY personnel to operate the facility and to haul containers from the terminal (these labor costs are identified separately below). Nor are private-carter labor hours included here (fees paid to private carter by Island commercial and institutional waste generators are listed below). (See Appendix Table B-6 for projected labor savings under the various pneumatic alternatives considered.)
- Minimum recoverable space used for non-AVAC waste-handling (includes only space currently required for exterior waste container storage and access): 2,641 sf. (Note: spaces such as waste rooms on each floor and waste-staging areas may not be necessary in newly constructed buildings, but it is not assumed that this space could be recovered for other use in existing buildings. See Appendix Table B-6 for projected space savings.)

Figure 3-6. Recoverable Space Currently Used For Waste Management (Source: Ross, Douglass, 2011)

- Equipment costs for non-AVAC waste handling: \$313,050 (litter bins, carts, motorized vehicles and containers used by surveyed management company, business and RIOC employees; does not include cleaning products and bags, or equipment used by businesses and hospitals, which is provided by private carting companies. See Table B-6 for projected equipment costs.)
- Private carting fees for commercial waste (estimated): \$800/day (\$300,000/yr) (commercial waste charges, \$150/day, \$50,000/yr; hospital charges [Coler only], \$600/day; off-Island residential recycling, \$30 [one management company sends recyclables off the Island; all others bring them to a DSNY container at the AVAC facility yard])

• Truck trips: 7 (commercial carter) compactor truck trips/day onto and off of the Island (6 trips for business waste and 1 trip for hospital waste).

Impacts of Waste That Is Handled by AVAC

• GHG emissions:

o For off-Island transport: 0.07 tpd (by DSNY roll-on/roll-off [Ro-Ro] trucks, including RIOC refuse, to transfer station)

o For electricity: 0.92 tpd

• Fuel use: 6.6 gpd

• Electricity use: 2,674kwh/day (976,000 kwh/yr); \$1351.24/day (\$493,204/yr)

Labor:

Hours: 41 hours/day (40 hrs/day AVAC; 0.79 hrs/day DSNY Ro-Ro pick-ups [of AVACed and RIOC refuse only] for off-Island transport)

o Cost: \$6,298/day (\$2,229,036/yr⁴⁸)

Figure 3-7. DSNY Stationary Engineers Turn on Exhaust Fans and Open Diverter Valves
From Terminal Control Room

(Source: Milford, 2010)

Maintenance costs: \$216.30/day (\$78,950/yr)⁴⁹

• Equipment replacement: \$890.41/day (\$325,000/yr)⁵⁰

• Truck trips (round trip): 3 (DSNY) Ro-Ro trips, 3 days a week (1 trip/day)

⁴⁸ One senior stationary engineer; 3 stationary engineers; 1 HPPT; 1 oiler; 2 machinists; 0.1 MWM/Electrician, plus 35 Ro-Ro collection shifts per year (for refuse).

⁴⁹ DSNY: \$12,000/yr; RIOC: \$66,950/yr. Maintenance costs do not include RIOC costs for equipment replacement.

⁵⁰ Average annual costs for AVAC building maintenance, pipe and facility equipment replacement. See Appendix Table B-08.

Quality-of-Life Impacts Due to Manual Handling of Waste That Does Not Enter the AVAC System

Truck traffic:

Among the adverse public-health, environmental, economic, and quality-of-life impacts caused by heavy trucks are particulate and gaseous emissions, noise, accidents, congestion, and pavement wear.

• Rats:

"The addition of more restaurants and outdoor eating options in the Southtown Riverwalk area is a welcome amenity for Roosevelt Island but it has also resulted in a notable increase in rats brazenly scampering all over the place particularly on the lawn in front of Starbucks, near the new fruit stand and elsewhere. While sitting at the Starbucks outdoor patio recently, I noticed out of the corner of my eye what I thought (hoped?) was one of the black squirrels scampering nearby but soon realized it was a huge rat. Very, very disgusting!"

- --Roosevelt Islander, Wednesday, October 1, 2008
 - Odors (and Rats):

"Even bigger GARBAGE SHED is placed next to [...] store. The stench is unbearable, garbage stored forever, vermin love it !! The resident cat takes care of vermin inside the store, they have to go somewhere - it's RAT PARTY TIME on RI. It's AMAZING that we supposedly went to the MOON, but, on RI ALL is a big problem, rats rule!"

- -- Anonymous comment, Roosevelt Islander blog⁵¹
 - Visual aesthetics (see also figure 3-6):

Figure 3-8. Current Waste Staging (Ross, Douglass, 2011)

 $^{^{51}\} http://roosevelt is lander. blog spot.com/2008/10/roosevelt-is land-rats-infesting. html,\ accessed\ 10-6-11.$

OPERATIONAL PREFERENCES ASSESSMENT

With regard to system-design and operations, there are three major issues associated with how an upgraded system for discarded residential materials might be managed.

The first, and most significant, is whether residents would directly insert their recyclable materials into the proposed new exterior inlets—which would require residents (some of whom are elderly and/or disabled)⁵² to carry their discarded materials via elevator or stairway to the outside and insert their discards (which might include potentially embarrassing or distasteful materials such as liquor bottles or food wastes) into inlets in public viewor whether building maintenance staff would perform this function as they currently do (by removing these materials from the "AVAC"/utility rooms on each floor). There are strong grounds for recommending that residents manage these materials directly, as is done in most places in the world where there are outdoor recycling receptacles of various kinds. The advantages of having residents manage discarded materials directly include significant labor savings as well as increased diversion of materials from the refuse stream due to increased awareness of recycling. Our initial contacts with management personnel, building staff, and building residents, however, suggested that Islanders, as well as building managers, had a strong preference for allowing building residents to continue to deposit their recyclables in the hallway closets for building staff to remove. Since the effectiveness of a recycling program depends in part on the population's willingness to participate in it—and because outdoor recycling systems are not something to which US citizens are generally accustomed—the study team thought it important to assess the views of both building managers/support staff and residents on this issue.

A related question, the answer to which depends in part on the answer to the first question, is whether the new exterior inlets should be placed near the front doors or the rear doors of the residential buildings. Placing the inlets as near as practicable to building entrances is considered important for minimizing the inconvenience associated with inclement weather. If they were in front, they would be conveniently placed for residents carrying discarded materials out of their buildings on their way to work, errands, or other purposes. If they were in the rear, residents might have to make a special trip to access them, but the composition and quantities of their recyclables would not be as publicly visible. If porters were to handle these materials, our expectation was that most parties would prefer rear-door inlets. On the other hand, if residents were to handle these materials, we expected that most residents would prefer front-door locations, for reasons of convenience. Although residents also expressed concern that their neighbors would not use inlets properly, leaving bottles and paper on the ground around them, and thus creating an eyesore near the public entrances, highly visible front-door locations may in themselves encourage proper use.

The final question is whether there should be two additional inlets (one for each of the two streams legally required to be separated: paper; metal/glass/plastic) or whether there should also be a third new inlet (for kitchen wastes and other compostable organics). If porters are responsible for inserting recyclables—so that the two dry recyclable streams, metal/glass/plastic and paper, can be inserted at different specified times—only one additional inlet could be installed for these two fractions. This would produce a modest savings in initial capital costs, but this savings would be outweighed in the long-run by increased operating costs. However, if extra tee-joints are installed, at a relatively small incremental cost, when the system is first built, additional inlets for additional fractions could be added at some future point without incurring a significant cost penalty.

If porters rather than residents are responsible for inserting materials into the new inlets, designating sourceseparated food waste as a fourth fraction could be problematic from an operational perspective, since it would involve frequent manual collection, transport, and bin-cleaning, and could increase the potential for nuisances.

⁵² European citizens typically are required to carry their own discarded materials to street-level receptacles. In Wembley City, England, where an auto-pneumatic tube system has been in operation for several years, caretaking staff handle waste only for elderly or disabled residents who are designated as needing "assisted collection." (Julian Gaylor, Managing Director, Envac UK Ltd. to Jonas Tornblom, Director, Corporate Marketing & Information, Envac AB, 1-26-12.)

The finding from the qualitative research reported above was that both Island residents and building managers and staff share a strong preference for a porter-managed recycling system. This would suggest that new exterior inlets for recyclable fractions--insofar as would be consistent with the objective of minimizing capital and operational costs by locating the inlets at an appropriate grade near existing trunk lines--might best be located in places most convenient for the building staff in relation to their other operational responsibilities (provided, of course, that these locations do not interfere with building or landscape features or with flows of people or materials). Such locations are likely to be at the rear of buildings, near existing vehicle-storage and -loading areas. This preference for porter-managed inlets also suggests that a third new exterior inlet for food waste and other compostable organics is unlikely to be installed, at least at the present time.

It should be noted, however, that there are no engineering, construction, or operational constraints that would require that this decision on how the inlets are operated (i.e., by residents or porters) be made on an Island-wide basis. One building complex may choose to operate one way and another the other. Likewise, there is no engineering or operational reason why operating patterns could not change over time, so that a building complex might begin with porter-operation and then shift at some future point to resident-operation. Finally, a decision to install a fourth inlet for source-separated food waste and organics could also be made at a later time, since there would not be a significant cost-penalty associated with such a later retrofit, provided that relatively low-cost modifications are installed at the outset. Note also that there would be significant operational savings (in labor costs to waste-generators/building managers) if residents managed their recyclables directly, rather than relying on building staff to handle them.

(See "Qualitative Assessment of Operational Preferences" in Appendix A-4 for further details.)

ON-SITE ENGINEERING ASSESSMENT

Envac's on-site engineering inspection found air leaks in several of the buildings' diverter valves (the valves that connect the gravity-fed trash chutes to the pneumatic trunk line). Those valves will need to be replaced in order to achieve maximum energy efficiency. The remaining valves are in satisfactory condition and can continue to be used in an upgraded system.

The most significant finding was that the final section of the eastern trunk pipe—the 800-meter section along the east side of the Island leading into the terminal—is severely eroded. This section of pipe will need to be replaced. Replacing it in its present position, since part of this section runs below buildings, would be difficult. From an engineering/construction standpoint, as well as from the standpoint of accessing the pipe for future maintenance and repair, a new alignment within a permanent right of way such as along Main Street or along the steam line on the eastern shore might be preferable to the existing alignment. (A new alignment along Main Street would also offer other operational advantages, as discussed below.) Other sections of pipe can continue to be used, with local repairs as required.

COSTS OF THE NO-AVAC OPTION

In order to assess the costs and benefits of the full range of potentially practicable alternatives, we needed to consider, in addition to the various AVAC-upgrade scenarios and the "No-Action alternative" (i.e., continuing to operate and maintain the current AVAC facility in the same way that it has been managed to date but with the increased refuse volume from the planned build-out of the remaining Southtown residential towers)--the all-truck (i.e., No-AVAC) alternative.

The current AVAC system, which has been operating continuously since it opened in 1975, was designed and built in the pre-digital era, when generators, fans, and other equipment were much less energy-efficient than they now are and before current electronic technology increased the ability to automate system monitoring and operation. Furthermore, after 38 years of continuous use, much of the equipment—notably the steel trunk pipes—is either at or near the end of its useful life. As a result, not only are labor and electricity costs much higher than they would be in a newly-built facility using contemporary technology, but maintenance costs to replace worn-out parts have escalated dramatically in recent years. But

comparing only the costs of an upgraded-AVAC option to the No-Action alternative does not represent the universe of alternatives that a real-world decision-maker would face. This real-world set of alternatives would also include the option of shutting down the current AVAC system and replacing it with the kind of conventional manual-and-truck collection used everywhere else in the City.

Calculating the actual, complete cost of collection (including the appropriate share of the NYC Department of Sanitation's administrative costs, fully loaded labor costs, facility costs, etc.) is notoriously difficult. This is particularly true with regard to apportioning these costs to the various source-separated streams that the Department collects (i.e., metal/glass/plastic; paper; refuse), since these various streams vary in volume and density, and hence in collection efficiency.

In the AVAC case, there would be much less variation in collection efficiency between the different waste fractions, since all fractions would be collected through the same trunk tube and since the frequency of valve openings and the electricity consumed by the suction fans would vary based on the volumes and densities of the materials involved. Therefore, rather than assigning a separate value to the cost of collecting each fraction, one per-ton value is used across-the-board for all AVAC-collected materials.

We believe that the best data source developed to date for determining the full costs for DSNY's collections is a study produced for the Natural Resources Defense Council (NRDC) by DSM Environmental, in cooperation with DSNY, in May, 2008, using data for FY 2005. ⁵³ Inflating 2005 dollars to 2013 dollars, our analysis shows a weighted cost of collection for Roosevelt Island, based on its proportions of refuse and recyclables, of \$230/ton (including debt service for trucks and garages). (Details of this cost analysis are presented in Appendix B.)

⁵³ Analysis of New York City Department of Sanitation Curbside Recycling and Refuse Costs, http://docs.nrdc.org/cities/files/cit 08052801A.pdf, last accessed 7-27-12.

Section 4 ALTERNATIVE SCENARIO DEVELOPMENT AND ANALYSIS

DESIGN CONSIDERATIONS

These design considerations guided the development of the universe of alternative design scenarios to be considered:

1. Waste sources

- a. Hospital waste. Based on an analysis of the data outlined above, we made an initial decision to exclude hospital waste from plans for an Island-wide system. A single trunk line (and its associated terminal equipment) can handle a maximum of about 18-20 tons a day. Since the hospital by itself generates some 12 tons a day, which would be enough to meet the economies of scale for a typical facility, hospital waste is not included in the Island-wide analysis. A decision to develop its own terminal for its own use would be made by the hospital itself. We would recommend that the hospital consider the costs and benefits of developing its own, separate, pneumatic waste-management system, which could be tailored to its own specific needs for regulated and unregulated medical waste.
- b. Litter bins. All other potential waste sources were considered in the next iteration of scenario-development. Litter bins that are some distance from the major buildings along Main Street would be the most expensive waste source to include in the system, on a per-ton capital and operating cost basis (due to the length of pipe that would need to be installed, the number of inlets, and the relatively small volumes of waste). One alternative we considered was using a mobile pneumatic system to collect bins in the parks at the southern and northern extremities of the Island. The costs of such a system, since it would require two specially-equipped collection trucks (in order to provide redundancy in the event of a break-down), were still disproportionately high. We therefore decided to exclude bins at any significant distance from the central Main Street area from our scenario alternatives. Bins in the park at the north end of the Island could more efficiently be linked to a separate system that the hospital might establish. Bins in the park at the south end of the Island could be more efficiently connected to a separate Cornell-Technion campus system.
- c. Commercial waste. Provided that institutional agreements could be reached to include commercial waste in the pneumatic system, commercial waste collection would be practicable--combining commercial inlets with pedestrian litter bins on central Main Street--since mechanisms for metering commercial waste for billing purposes could be installed and since the new pipe for the abraded section requiring replacement could be aligned along Main Street.

2. Number/location of terminals

The projected volumes from the remaining waste sources (current and future, including waste from the planned Cornell campus) dictate the need for at least two separate terminals. A "terminal" is defined as one trunk line plus associated operating equipment, i.e., at least one cyclone-separator and air filter, at least one compactor/container configuration, and at least one generator/fan set. Although a single terminal has only one trunk line, it may have more than one set of ancillary equipment, depending on the number of waste fractions collected. The question then becomes whether the two terminals should be co-located within the footprint of the current AVAC facility, which offers significantly more space than would be required for two terminals, or whether one terminal should be located at the site of the current terminal, to handle waste from the northern part of the Island (the section currently served by AVAC), and a second terminal located at the southern end of the Island, to handle waste from the planned Cornell campus.

While it would be theoretically possible to draw waste to the northern terminal, through one tube, from all of the new buildings planned at the southern end of the Island (the practical distance for transporting waste pneumatically is just over one mile), pulling this volume of waste that far would impose significant economic penalties. Energy demands for transporting waste this distance would be higher. And wear on the final sections of the steel pipe, through which all waste to the terminal passes, would be greater. (This

extreme wear on the final section of pipe is demonstrated by the relatively severe abrasion of the final 800 meters of the existing trunk line.)

It would therefore be preferable to locate a terminal in the south, to serve the campus, in addition to a terminal in the north, to serve all the residential buildings on the Island. This arrangement would have the additional advantages of allowing different fractions to be handled in the respective terminals, and of providing greater flexibility in the planning and construction schedule for the Cornell facility. A disadvantage would be the fact that containers from the southern terminal—to the extent that off-Island disposal would be required, as it is in the current system—would have to be transported to the northern terminal (for removal by truck along with the containers from that terminal).

3. Waste fractions

Given the incremental capital and operating costs associated with each additional waste-stream fraction-each of which requires separate inlets, equipment trains, and separate time-separated transport through the central trunk line, thus requiring additional energy plus constraining the capacity of the line--a balance must be achieved between, on the one hand, the economic and environmental benefits realized by including additional waste fractions, and on the other, the incremental costs of building and operating a larger system. Four fractions is considered the practicable limit. A one-fraction system—for refuse only—would simply replicate the current system, without eliminating separate truck trips for the two additional fractions that NYC requires to be collected separately from refuse: metal/glass/plastic and paper. A three-fraction system, then, would be the minimum required to eliminate trucks for non-bulk waste. In order to introduce bulky cardboard (OCC), it must be cut to size by hand or shredded and densified into appropriately sized cubes by a specialized "bricking" machine. Since we are assuming that all paper, including OCC, will be transported via the AVAC system, we are assuming that building owners will install this bricking equipment on their properties. A fourth inlet, for food waste and other compostable organics, would meet the objectives of PlaNYC (see Figure 4-1) by allowing the separate collection of an organics stream suitable for processing, either on the Island or at some nearby location--thus avoiding the need for disposal in a remote landfill. Given the need for frequent collection of putrescible food wastes (which is particularly acute during the summer months), and the adverse economic and environmental impacts of an additional separate collection, collection of source-separated organics from high-density residential areas by truck would pose substantial economic and environmental costs. Pneumatic collection would provide a practicable solution for source-separated compostable organics from a densely populated neighborhood.

Figure 4-1. New York City's Policy Commitment to Source-Separate Organics (Source: New York City Mayor's Office of Long-Term Planning and Sustainability, 2012) 54

INITIATIVE 6: Create additional opportunities to recover organic material

Approximately 30% of what we throw away in our homes is organic material...

On the commercial side, we estimate that organics represent 18% of the total waste stream... Paying to transport these organics to distant landfills is not only expensive due to the high water content of these materials, but it is also a key driver of our GHG emissions...

Yet with proper separation and treatment, food waste can be converted into a valuable resource for agricultural applications and energy generation... Diverting organics from the general waste stream could save the City and its businesses millions of dollars... [and] reduce transportation impacts such as congestion, noise, and air emissions.

⁵⁴ http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/planyc_2011_solid_waste.pdf, p. 140, last accessed 01-22-13.

4. Single-fraction or multi-fraction inlets

A single inlet could be used for two or more fractions if only one fraction were inserted during a particular time interval and this fraction were pneumatically pulled into the terminal prior to the time interval specified for the next fraction. Such a system would not be practicable for use by a general residential or pedestrian population, since the inconvenience entailed would be expected to significantly reduce compliance with source-separation recycling mandates, decreasing the volumes source-separated from non-recyclable refuse and/or increasing cross-contamination rates between the specified fractions.

However, if all material was inserted into the inlets by building porters, residents would deposit their source-separated materials in a staging area (as they now do) at any time, where the separation between materials would be maintained, and porters would schedule their tasks so that one fraction would be removed from the staging area during one specified time window and the other at another. Thus a porter-mediated system—the preference indicated by virtually all survey respondents—would allow the capital-cost savings associated with a multi-fraction inlet. If separate cyclones and compactor lines were installed for each of the two fractions, the incremental capital cost savings associated with multi-fraction inlets would be relatively modest (and offset in the long run by increased operating costs).

Metering

Because commercial establishments are required to pay for waste disposal on a unit basis (by unit of volume or weight), through a contractual arrangement with a private carter (according to current regulations) introducing commercial waste into the pneumatic system would require a metering mechanism so that individual businesses could be billed based on the volume or weight of the specific waste fractions that they introduced.

Such systems are now in common use in European installations. Businesses are issued plastic key-cards with unique identifiers that enable them to open the large-sized openings on outdoor inlets. The volume is measured by sensor and automatically generated bills are then sent monthly. (Smaller openings on each inlet, which do not require key-cards, are accessible to any passing pedestrian.)

This metering system could also be used to measure residential waste-fraction inputs, ideally at the household level. Rather than measuring input volume, the simplest systems for measuring residential waste track the number of times each resident opens the inlet and charges per use according to the average input volume. Since unit-based waste charges (with lesser or no charges for recyclable fractions) have been widely demonstrated to reduce waste generation (in the US, by an average of 16%), ⁵⁶ it would be desirable to install this equipment in inlets for residential buildings as well, so that a Save-As-You-Throw ⁵⁷ system could be implemented in the near-future. Alternatively, the installation could be designed in such a way that meters could readily be added at a later point.

The fees collected through metering, both for residential and for commercial generators, would not represent new charges to them. Rather, for residential generators, the concept is that other charges that they currently pay would be reduced by roughly the amount that is currently spent on managing the waste they generate. That is, since New York City's current waste-management budget, well over \$1 billion/year,

⁵⁵ The incremental opex for the system operators (RIOC, DSNY) would be modest. The additional labor costs for building managers/residents, however, could be significant.

⁵⁶ This US average includes a 6% reduction in yard waste, which, in general, would not be applicable in New York City. As shown in Appendix B, our calculation, applying national reduction percentages to RI's waste proportions produces an expected reduction in RI's case of about 12%.

⁵⁷ Unit-based pricing schemes are often called "Pay-As-You-Throw" systems. But since conscientious households could reduce their current costs by switching to a system that allowed them to pay less if they discarded less refuse and increased their recycling rates, "Save-As-You-Throw," some have suggested, provides a more accurate indication of the system's effects.

represents about 20% of the city's residential property tax receipts,⁵⁸ Roosevelt Island's apartment-renters could expect to receive a reduction in their rental fees equivalent to the property-tax (or other) reductions (or rebates) provided to the Island's building owners in exchange for their participation in what could be the City's first Save-As-You-Throw metering program. If, as expected, the Island's refuse-generation-rate decreased in response to this economic incentive, there would be a win-win situation, with the City experiencing reduced disposal costs and the residents experiencing reduced disposal fees. Commercial generators already pay for waste collection on a unit basis. Under a metering system, these charges would not be expected to change significantly and would remain, per current NYC regulations, below the rate-cap established by the City's Business Integrity Commission.⁵⁹

CONCEPTUAL ENGINEERING DESIGNS, RIOC NETWORK

<u>General Considerations.</u> Certain general design principles were assumed for any of the alternative scenarios considered.

Terminal. A new terminal facility was assumed for all scenarios. The current terminal building occupies 17,760 sf and the truck access and bulk and recyclables material staging area occupies 24,218 sf, for a total occupied area of 41,978 sf. The new terminal building will require between 3,000 and 10,000 sf, depending on the complexity of the system, while the truck-maneuvering and bulk-staging area will require about 12,120 sf. Thus approximately 20,000 sf (half an acre) could be available for new use if the existing building were demolished or repurposed (rather than simply putting the new equipment inside the existing building) and a new terminal building, in which recyclables were handled pneumatically, were constructed. If recyclables continued to be handled manually, approximately the same amount of space would be available for re-purposing, since the additional outdoor area required for staging these materials would be roughly offset by the decreased space required for the terminal building.

-

⁵⁸ The City's waste-management budget is taken from the City's general fund, to which property tax is simply one of the revenue sources.

⁵⁹ Questions about whether fees for commercial generators would be collected by the City, as the AVAC system operator, or by private carters, as at present, would be resolved during final system design, along with related questions related to private carters' participation in the system and their continued role, if any, in off-Island transport and disposal. Given the potential operating savings (assuming that capital costs are primarily absorbed by the AVAC system owner [RIOC], perhaps with grant or other assistance from other government agencies), the division of private-carter and public roles and revenues could also be structured in a win-win fashion.

⁶⁰ Envac, "Draft Counter Proposal for the AVAC Facility, Roosevelt Island-RIOC," 06-11-10.

Figure 4-2. New Terminal Floor Plan Superposed Over Existing Facility (Shaded) (Source: Envac, 2011)

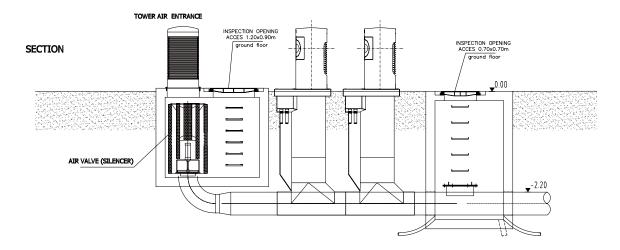
<u>Inlets.</u> Retrofitting existing buildings to install additional inlets for recyclable materials would be physically and economically impracticable. Therefore new inlets to accommodate additional fractions would have to be installed on the exterior of the residential towers, as is the norm in most European and Asian pneumatic installations.

The new inlets for residential recyclables would be installed as close as practicable to the apartment buildings' service entrances, with the exact locations to be determined by specific local conditions (e.g., depth to trunk line, grade, obstructions due to built structures or landscaping features, pedestrian and/or vehicular flows).

Figure 4-3. Illustrative Residential Inlet Location Plan Indicating Relationship to Building and Main Trunk Line
(Source: Envac, 2010)

BLDG.2

DV L:1


E16

AIV K

AIV K

Figure 4-4. Typical Section View: Residential Inlets

(Source: Envac, 2010)

Inlets for commercial waste would be installed somewhere between the building faces and the curb line on either side of Main Street, at intervals of approximately 30 meters, staggered on either side of the street (i.e., with 30 meters between inlets on one side of the street, but about 15 meters between inlets on opposite sides of the street). These inlets would also serve as receptacles for pedestrian litter, thus eliminating the need for the conventional litter bins currently used on the street. There would be separate inlets for as many fractions as were managed in the rest of the network, with separate smaller, non-metered openings for pedestrian waste and larger, metered openings for commercial waste, so that volume-based bills could be automatically generated and sent to individual businesses each month.

These sidewalk inlets could serve multiple functions in addition to collecting commercial and pedestrian discards. They could also be used for signage, lighting, and various kiosk-like applications. Their design should be consistent with other street furniture along Main Street.

Alternative Scenarios. Through an iterative process, multiple alternative scenarios were considered. These included scenarios with one Island-wide system--including the Cornell campus--and one set of colocated terminal facilities located near the north end of the Island at the site of the current terminal, and scenarios with two separate terminals for the RIOC and Cornell portions of the Island. For the reasons outlined above, we early-on eliminated the single-network option in favor of a dual-network system (with a separate system to handle the hospital should the hospital decide to move to pneumatic collection).

We also considered the possibility of one, two, or three fractions for the RIOC-only network. For the reasons outlined above, we had previously determined that adding a fourth/organic fraction at this time would be impracticable. It might well be desirable, however, when the new inlets for the two recyclable fractions are installed, to include tee-joint connections to allow for the future installation of a fourth fraction at minimal incremental cost.

A pneumatic system that included commercial waste was the final option considered. As noted above, the new commercial inlets along Main Street would double as pedestrian litter baskets.

These alternative scenarios are presented below. Note that these alternatives could also be considered as a sequential plan for implementation. That is, RIOC could decide to start with the simplest case (Refuse-Only) and add additional fractions for recyclables later. In this simplest case, the system would begin by collecting only refuse from residents and RIOC facilities, and add refuse from commercial generators and litter bins at a later point.

Figure 4-5. Comparison of Scenarios Considered Based on Waste Fractions and Sources Handled

Scenario	Docidonoso	Main Street	
Scenario	Residences	Businesses	Campus
Current	•		
Upgrade Only	•		
Upgrade + Recyclables	• • • •		
U + R + Commercial	• • • •	• • • •	
Cornell Tech Campus			• • •

- Refuse
- Metal Glass Plastic (MGP)
- Paper
- Organics
- O Potential to add organics

Figure 4-6. Upgrade, Refuse Only

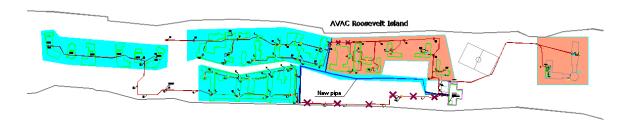


Figure 4-7. Upgrade + Recycling (New Pipe extends length of Main Street)

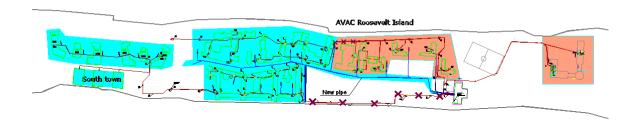
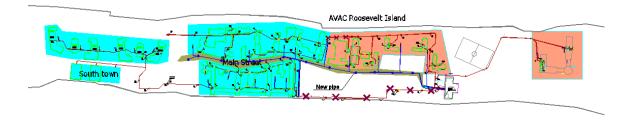



Figure 4-8. Upgrade + Recycling + Commercial + Main Street Litter Bins

COST, ENERGY USE, AND GREENHOUSE GAS EMISSIONS⁶¹

In comparing the costs and environmental impacts of the alternative scenarios, we used two benchmarks. The first is the "No-Action" alternative: continuing to operate the current system, assuming actual 2011 per-ton costs, 62 but increasing the number of refuse tons to reflect the projected contribution from the three planned Southtown towers. In the No-Action alternative, recyclables would continue to be managed manually, as at present, and there would be no change in current commercial-waste or litter-bin collections. The second benchmark is the "Manual" alternative, which represents the hypothetical situation in which the current AVAC facility would be closed and no new terminal built. The assumption for this benchmark is that DSNY rear-loader trucks would collect both refuse (which is currently handled by AVAC) and recyclables from the curb (since this service is offered everywhere else in the city). Commercial waste would continue to be collected by private carters and RIOC would continue to collect litter-bin waste in its small compactor truck.

Capital and operating costs for the upgrade alternatives were developed by Envac. Detailed cost assumptions are presented in Appendix B. The staffing levels specified by Envac were matched to actual DSNY labor rates for the labor titles required, including fringe and overhead.⁶³ Electricity costs for upgrade scenarios were calculated by multiplying the projected kilowatts and kilowatt hours for the upgrade scenarios by the actual rate paid by DSNY in 2011 (total payments/total kilowatt hours).⁶⁴⁶⁵

In Table 4-1, different numbers of tons are assumed for each pneumatic-system alternative: The No-Action alternative shows the number of tons currently handled by the AVAC (refuse-only) system, plus the refuse(-only) tonnages projected from the three not-yet-built Southtown apartment towers. The Upgrade + Recycling pneumatic scenario includes those current and projected tons, plus current and projected recyclables. The Upgrade + Recycling + Commercial + Litter Bin scenario would handle all discards currently generated or projected to be generated on the Island, other than those for the planned Cornell-Technion campus and those generated by the hospital. Details on how these figures were derived are provided in the spreadsheets in Appendix B. In Table 4-2, the per-ton operating costs of each of these alternatives--both with and without debt service--are compared to those for conventional manual collection. Direct per-ton operating costs, including the container dray from the AVAC terminal to the transfer station, when debt service for initial capital expenses is not included, are less expensive for all pneumatic alternatives than are the ongoing costs of manual collection; these savings range from about 10 to 30%. But due to the relatively high initial capital costs of pneumatic systems, when debt service is included the annual operating costs of the various upgrade alternatives are between 40 and 80% greater than those of manual collection. The Net Present Value costs of the pneumatic alternatives are 4.8 to 9.1 times greater

⁶¹ See Appendix B for documentation of all the results discussed in this section.

⁶² Actual 2011 costs were inflated to 2013\$ to match the 2013\$ used for the other scenarios.

⁶³ See Table B-9 in Appendix B-2. Envac staffing levels are specified as per standard Envac operating agreements; they differ considerably from standard DSNY staffing levels, which involve 2-3 individuals to cover one shift on-site, given weekends, vacations, and sick days. Current Envac operations are digitally controlled and can be done remotely, with personnel used for monitoring, maintenance, and trouble-shooting. We conducted a sensitivity analysis of higher staffing projections. If Envac staffing projections were tripled, the effect on NPV would be an increase of 50 to 80% depending on the scenario.

⁶⁴ See Table B-10 in Appendix B-2. Again, all 2011 actual costs were inflated to 2013\$ for consistency.

⁶⁵ Note, as shown in Table B-10, that the tariff structure under which DSNY service falls does not allow time-of-day pricing for facilities whose peak demand is below 1500kw, as any alternative AVAC terminal's would be. Another factor not considered in our analysis, although it is something that should be considered for possible implementation, is electricity that might be contributed by solar panels installed on a new terminal, or other alternative energy sources, such as Verdant Energy's East River turbines, which are virtually adjacent to the AVAC terminal.

⁶⁶ Bulk waste, construction-and-demolition debris, hazardous wastes, and yard wastes are excluded from all systems, since they are not amenable to pneumatic collection, nor are they collected in standard DSNY or private-carter collections. Litter bins not located along Main Street are excluded from all scenarios. (Litter bins at each end of the Island could be incorporated into plans for the hospital and campus networks, respectively.)

than those of conventional collection. 67 To equalize these costs, annual externality benefits of about 0.3 to 1.1 million would be required. 68

Table 4-1. Comparison of Cost Components of Alternative Pneumatic Scenarios

Capital Components	2013\$							
	No-Ac	tion	Upgr	ade	Upgra	ide+R	Upgrade+R+	Comm'l+Litter
	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Tons/Y:	2,675		2,675		3,854		5,672	
Terminal Bldg Construction (SF)	17,760		2,500	\$875,000	4,700	\$1,750,000	8,300	\$2,850,000
Terminal Equipment Cost				\$2,862,595		\$4,282,329		\$7,723,312
Trunk Pipe Installation (meters)	1,800		1,800	\$855,000	4,000	\$1,900,000	6,000	\$2,850,000
Pipe Cost				\$1,866,736		\$1,866,736		\$3,595,380
Interior Inlets (Diverter Valves)	41		41		41		41	
Exterior Inlets (Diverter Valves)					117		150	
Total				\$6,459,331		\$16,987,777		\$26,265,050
Capital Cost Per Annual Ton				\$2,414		\$4,407		\$4,631
Debt Service (34yrs)/Y				\$382,088		\$1,004,876		\$1,553,653
Debt Service (547/3)/ T				\$143		\$261		\$274
				,				
Expense Components				- 4 -		4		
	No-Ac		Upgr		Upgra		Upgrade+R+0	
	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Tons/Y:	2,675		2,675		3,854		5,672	
Labor (Facility) Employees	10.2	\$1,391,828	1.2	\$181,191	1.5	\$226,203	2.0	\$302,366
Electricity (kwh)	1,222,088	\$643,334	193,974	\$104,919	548,935	\$126,897	837,017	\$237,644
kwh/T	457		73		142		148	
Minor repairs+Spare Parts/Y		\$15,653		\$22,573		\$39,676		\$72,347
Employee vehicle			1	\$10,345	1	\$10,345	1	\$10,345
Office Supplies				\$2,748		\$2,748		\$3,208
Telephone/Water				\$3,483		\$3,483		\$3,483
DSNY Total/Y (-Dray)		\$2,050,815		\$325,260		\$409,352		\$629,394
DSNY Cost/T (-Dray)		\$767		\$122		\$106		\$111
RIOC Component Replacement/Y		\$410,733		\$55,727		\$157,162		\$242,323
Total Opex(-Dray) (-Debt Service)		\$2,461,548		\$380,987		\$566,514		\$871,716
Opex Cost (-Dray) (-Debt Service)/T		\$920		\$142		\$147		\$154
		i i	İ					
Dray Components (Refuse, MGP, Paper i	ncluded) No-Action		Upgrade		Upgrade+R		de+R+Comm'l-	1 244
		C		Cont				
- 04	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Tons/Y:	2,675		2,675		3,854		5,672	
		100 105	101			100 511		
Labor Shfits/Y	183	\$86,125	164	\$77,251	50	\$23,711	69	\$32,460
Collections/Y	733		658		200		275	
Diesel Fuel (gals/Y)	3,032	\$10,159	2843	\$8,790	1306	\$4,374	1856	\$6,217
Vehicle cost + Maintenance/Y		\$38,424		\$34,413		\$9,940		\$11,397
Total Dray/Y		\$134,708		\$120,454		\$38,024		\$50,074
Total Dray/T		\$50		\$45		\$10		\$9
Cost Summary								
	No-Action		Upgrade		Upgrade+R	Upgra	de+R+Comm'l	Litter
	Units	Cost	Units	Cost	Units	Cost	Units	Cost
Tons/Y:	2,675		2,675		3,854		5,672	
Total\$ (Opex, Debt Serv, Dray)		\$2,596,256		\$883,528		\$1,609,414		\$2,475,443
Annual Savings v. No-Action		NA		\$1,712,727		\$986,841		\$120,813
Debt Service/T		NA		\$143		\$261		\$274
Opex/T		\$920		\$142		\$147		\$154
Total Opex w Debt Serv/T (W/Dray)		\$970		\$330		\$418		\$436
Total RIOC/T (Debt Serv, Repl.)		\$154		\$164		\$301		\$317
Total DSNY/T (Opex+Dray,-DS, -Repl.)		\$767		\$167		\$116		\$317 \$120
DSNY Savings/Y v. No-Action		4,07		\$1,739,809		\$1,738,147		\$1,506,056

⁶⁷ Assuming a 34-year bond life, 4.75 percent interest, and a 3% discount factor. Sensitivity tests in Appendix B, for different discount rates do not significantly affect the results. Nor does including the fees currently charged by private carters to Island businesses (about \$50,000 in 2011) significantly change the results, as also shown in Appendix B.

⁶⁸ Note that this NPV calculation covers only the 34-year bond period. This is conservative insofar as after the initial capital cost is amortized, the facility has an indefinite useful life (unlike truck-based collection) since ongoing replacement of all facility components is included in the annual operating costs.

Table 4-2. Cost Comparison of Alternative Pneumatic Scenarios With Manual Collection

	2011 AVAC	No-Action	Upgrade	Upgrade+R	Upgrade+R+ Comm'l+ Litter	Manual	Upgrade+ Meter
Scenario-Specific T/Y	2,117	2,675	2,675	3,854	5,672	3,891	2,675
CapEx			\$6,459,331	\$16,987,777	\$26,265,050	\$1,381,319	\$7,403,331
CapEx/T/Y			\$2,414	\$4,407	\$4,631	\$355	\$2,767
OpEx/Y, w/Dray, w/o DEBT SERVICE	\$2,004,768	\$2,596,256	\$501,505	\$604,597	\$921,805	\$817,089	\$501,505
OpEx/Y w/Dray w/o DEBT SERVICE/T	\$947	\$970	\$187	\$157	\$163	\$210	\$187
Ratio Opex w/o DS v. No-Action			19%	16%	17%	22%	19%
Annual Debt Service			\$382,088	\$1,004,876	\$1,553,653	\$97,117	\$437,928
Debt Service/Ton			\$143	\$261	\$274	\$25	\$164
OpEx/Y w/Dray+DS			\$883,593	\$1,609,473	\$2,475,459	\$914,206	\$939,433
OpEx/Y w/Dray+DS/T			\$330	\$418	\$436	\$235	\$351
Ratio Opex W DS v. No-Action			34%	43%	45%	24%	
Ratio, AVAC W DS/Manual		413%	141%	178%	186%		
NPV Ratio, AVAC/Manual			4.8	8.3	9.1		5.7
Externality Benefits/Y to Balance NPV			\$255,000	\$700,000	\$1,140,000		\$310,000
OpEx/Y W/DS Incl Transp-Disp			\$1,266,182	\$1,992,063	\$2,858,048		\$1,276,112
Net Incremental Cost of Metering							\$9,930
NPV/Y Cost of Metering							\$55,000

If metering equipment were installed to provide unit-pricing capability, a reduction in waste-generation on Roosevelt Island of over 5% would be expected, while some refuse would also be shifted into the recyclable streams, thus producing about a 12% reduction in the amount of material requiring disposal. Since most of New York's waste is disposed of via long-distance transport to remote landfills, at an average cost of \$143/ton, ⁶⁹ this would produce a savings of about \$46,000/year, as shown in Table 4-3. As Appendix Table B-11 shows, this savings does not entirely offset the cost of installing metering equipment: the net annual operating expenses for the metered system (including long-distance transport and disposal) would still be about \$10,000 more per year than they would be for the Upgrade without metering (not including any additional net processing costs for recycling). To produce an equivalent NPV, an additional \$100,000 per year (over a 34-year bond period) would be required to offset the initial capital cost of installing metering equipment. But the additional benefits associated with reduced transport and landfilling requirements (a savings of about 820 gals of diesel fuel with an energy equivalent of about 114,000,000 BTUs and 43 tons of GHG), as shown in Table 4-3, would at least partially offset this cost, as would reductions in collection costs and impacts associated with a 5% reduction in waste generation, which are not tallied here. (There would be no additional metering costs associated with the Upgrade + Recycling scenario, since only refuse inlets would be fitted with meters. Commercial collection is already unit-based, so no benefits from reductions in waste-disposal needs would be expected from commercial metering.) 70

⁶⁹ Citizens Budget Commission, Taxes In, Garbage Out, May, 2012, p. 30,

http://www.cbcny.org/sites/default/files/REPORT_SolidWaste_053312012.pdf, last accessed 12-17-12.
⁷⁰ Note that no additional revenues would be projected for a system that included residential metering since the purpose of metering is to substitute fees from metering for other fees (residential property taxes or any other revenue stream entering the NYC General Fund) that are currently collected. It is proposed as a revenue-neutral system that merely charges on a use basis rather than on a blanket basis, and it is expected that costs would go down system-wide, for generators as well as for the sanitation-service provider, due to the reduction in waste volumes produced by this economic incentive.

Table 4-3. Expected Waste Tonnage, Fuel, BTU, and GHG Reductions From Metering/Unit-Pricing With an Upgraded Pneumatic System on Roosevelt Island

	No-Action OR Manual	Upgrade
Residential Refuse TPD	7.33	6.45
Residential Paper TPD	1.96	2.20
Residential MGP TPD	1.27	1.48
Total	10.56	10.14
W/ Avg 6% Source Reduction		9.93
REFUSE		
Transport+Disposal Cost/Yr	\$382,589	\$336,679
Transport+Disposal Savings/Yr		\$45,911
Transport Fuel/Gals Yr	6,827	6,008
Transport Fuel Savings/Gals Yr		819
Transport GHG/Yr	88	78
Transport GHG Savings/Yr		11
Disposal GHG/Yr	270	237
Disposal GHG Savings/Yr		32
Total Transport+Disposal GHG	358	315
Total Transport+Disposal GHG Savings		43
Transport BTUs/Yr	948,271,737	834,479,128
Transport BTU Savings/Yr		113,792,608
Transport Truck Miles/Yr	1,264	1,113
Transport Truck Mile Savings/Yr		152

Potential economic benefits can be expected from the value of building and exterior space recovered from waste-management use and from labor savings by building managers as well as savings in their equipment and supplies. These potential savings are presented in Table 4-4. If these potentially recoverable space and labor and equipment savings were captured, building managers could save over \$1m per year in the Upgrade-Only alternative, thus more-than-compensating for the capital investment vs. a truck-only system. Adding recyclables to the pneumatic system could provide another quarter-million dollars a year of revenue benefits.⁷¹

Table 4-4. Annual Savings from Space Potentially Recoverable Through the Use of Pneumatic Collection (2012\$)⁷²

Annual Cost to Building Managers for Refuse Handling Space, Labor & Equipment							
	Space	Labor	Equipment	Total			
Manual (No AVAC) (Refuse & Recycling Staging)	\$1,134,231	\$837,096	\$295,524	\$2,266,851			
No-Action or Upgrade-Only ""	\$343,142	\$711,971	\$125,488	\$1,180,601			
Upgrade +Recycling	\$104,452	\$711,971	\$0	\$816,423			
Savings, Upgrade v. No-AVAC	\$791,089	\$125,125	\$170,036	\$1,086,250			
Savings, Upgrade v. No-AVAC (labor & equipment only)		\$125,125	\$170,036	\$295,161			
Additional Savings, Upgrade + Rec v. No-Action or Upgrade-Only	\$238,691		\$125,488	\$364,178			
Annual Cost to RIOC of AVAC Terminal Space							
		#Parking	Rent as				
	As Land Lease	Spaces	Parking Lot				
No-Action	\$63,425	120	\$338,231				
No-AVAC	\$36,591	69	\$195,128				
Upgrade-only	\$40,368	76	\$215,271				
Upgrade +Rec	\$25,413	48	\$135,521				
Upgrade+Comm+Litter	\$30,852	58	\$164,527				

⁷¹ The savings presented here quantify the real estate and building management benefits of shifting waste storage and staging from individual buildings to a neighborhood-scale collection terminal, as discussed in Section 1. While these savings may be readily achieved in new buildings, it would be difficult to capture the value of no-longer-needed waste rooms and staging areas in existing buildings.

7:

⁷² See tables in Appendix B-6 for source calculations.

The relative energy demand in the various system alternatives is shown in Table 4-5. Because of its specific combination of electric BTUs (for pneumatic collection) and diesel BTUs (for manual collection), the Upgrade + Recycling alternative is the most energy-intensive, using 68% more energy than would be used by Manual collection.⁷³⁷⁴

Table 4-5. Comparative Environmental Impacts

					Upgrade+R + Comm'l+	
		No-Action	Upgrade	Upgrade+R	Litter	Manual
Waste Tons	Scenario-Specific Tons/Y	2,675	2,675	3,854	5,672	3,891
	North-Island Total Tons/Y	5,672	5,672	5,672	5,672	5,672
Electricity	KWH/Y (000s)	1233	194	549	837	
	KWH/T (Tons Collected Pneumatically)	461	73	142	148	
Truck Miles	DSNY+Commercial Collection Miles/Y	38,960	38,011	30,302	9,305	32,897
	DSNY+Commercial Collection Mi/Y/T	6.87	6.70	5.34	1.64	5.80
	Multiple v. Manual	1.18	1.16	0.92	0.28	
Fuel	DSNY+Commercial Collection Gals/Y	13,112	12,922	9,384	1,861	14,096
	DSNY+Commercial Collection Gals/Y/T	2.31	2.28	1.65	0.33	2.49
	Multiple v. Manual	0.9	0.9	0.7	0.1	
GHG Emissions	DSNY+Commercial Collection Tons CO2eq/Y	571	211	303	313	157
	DSNY+Commercial Collection Tons CO2eq/T (Wtd Avg)	0.10	0.04	0.05	0.06	0.03
	Multiple v. Manual	3.63	1.34	1.92	1.99	
Energy Use	DSNY+Commercial Collection BTUs/Y (Millions)	5,968	2,434	3,245	3,115	1,931
	DSNY+Commercial Collection BTUs/Y/T (Wtd Avg) (Millions)	1.05	0.43	0.57	0.55	0.34
	Multiple v. Manual	3.09	1.26	1.68	1.61	
	Electric BTUs/Y (Millions)	4,170	662	1,873	2,856	
	Electric BTUs/T (Tons Collected Pneumatically) (Millions)	1.56	0.25	0.49	0.50	-
	Diesel BTUs/Y (Millions)	1,798	1,772	1,372	258	1,930
	Diesel BTUs/T (Wtd Avg) (Millions)	1.81	1.76	1.25	0.49	1.02
	Multiple v. Manual	1.78	1.73	1.23	0.48	
	Diesel/Electric	0.43	2.68	0.73	0.09	
	Electric as % of Total Energy Use	70%	27%	58%	92%	

All system alternatives require trucks, since even the pneumatic scenarios require drayage of containerized waste from the AVAC terminal to a transfer station or recyclables-processing facility. The most-inclusive pneumatic option (Upgrade + Recycling + Commercial + Litter) would produce 70% fewer truck miles than Manual collection. The No-Action AVAC option would produce 20% more truck miles than Manual collection; the Upgrade would produce about 5% more, and the Upgrade + Recycling about 10% less. Diesel fuel use, of course, directly tracks truck-miles traveled. All AVAC alternatives would displace diesel fuel via the use of electricity. In the Upgrade + Recycling alternative, electricity would account for over half the energy use; in the All-AVAC option, electricity use would be 10 times greater than diesel

⁷³ To test the sensitivity of our results to lower-than-projected energy efficiency, we increased electricity use by 20% and 50%. From a cost perspective, a 50% increase in electricity use for the simple upgrade raised the NPV by 17%. For the most-inclusive scenario, the same increase in electricity consumption had almost no effect on NPV (+2%). NPV is not changed in the all-inclusive scenario, because debt service is a larger portion of NPV than are operating costs. A 50% increase in electricity use raised overall CO2eq emissions by 16% for the simple upgrade and by 47% for the almost entirely electric all-inclusive scenario. At this rate, the all-inclusive scenario would still produce 20% fewer CO2eq emissions than the no-action alternative. If advances in pneumatic collection made it possible to achieve an energy efficiency 50% better than projected, greenhouse gas emissions for the all-inclusive scenario would be equal to those from Manual collection.

⁷⁴ The relative energy efficiency of Manual collection may be slightly greater than is shown in this analysis. The emission factors used for heavy-duty trucks, as documented in the appendix, are those used in the latest PlaNYC for NYC-specific conditions. NYC DSNY trucks are likely to achieve greater fuel efficiency than the citywide fleet, due to the Department's aggressive use of the latest low-impact technology. http://www.nyc.gov/html/dsny/downloads/pdf/pubinfo/annual/Hybrid/LL38_2013_Final.pdf, accessed 06-03-13.

Figure 4-9. Comparison of Annual Truck Miles by Vehicle Type

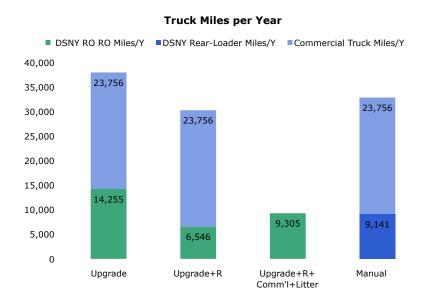


Figure 4-10. Comparative Energy Use of System Alternatives

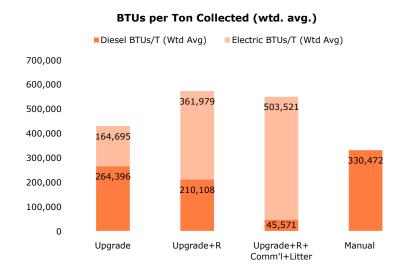
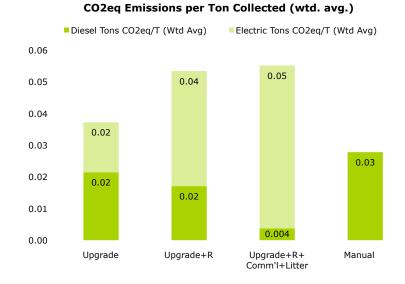



Figure 4-11. Comparative GHG Emissions of System Alternatives

GHG emissions (expressed as tons of CO2-eq per ton of waste collected) roughly track the relative BTU usage of the various system alternatives.⁷⁵

A variety of environmental benefits are associated with the use of electricity rather than that of liquid diesel fuel. The relative amounts of electricity vs. diesel fuel used for the alternative scenarios are presented in Figure 4-11, which shows, as discussed above, that the ratio of electric to diesel power increases as the proportion of pneumatically collected waste increases. Liquid transportation fuels, when burned in internal combustion engines, produce particulates that are of public-health significance, particularly on a local scale. Electric motors emit no particulates into the air around them and electricity can be produced from renewable resources such as wind, water, solar, and bio-mass (including organic refuse). In addition to potential greenhouse-gas reductions, such renewable sources may also offer fewer adverse public-health impacts than do fossil-based fuels. For these reasons, in its programs NYSERDA promotes the use of electricity over that of fossil-based fuels. Pneumatic-based systems, for obvious reasons, use a lesser proportion of liquid transportation fuels; when considering only on-Island impacts, the use of liquid fuel is eliminated.

Fuel use, while it is an important quantifiable measure of efficiency and emissions, does not capture the extensive mileage-related impacts of truck collection or the quality-of-life impacts of manual waste-handling. The cost of truck miles traveled due to pavement damage, congestion, accidents, noise and local air pollution depends on a number of factors, including the characteristics of the roadway material, the population density, the vehicle class and, in the case of noise, the height and position of surrounding buildings. Modeling these costs for Roosevelt Island-specific conditions is beyond the scope of this study, but the following examples of externalities imposed by truck collection provides a framework for evaluating the potential value of upgrades to the pneumatic system.

• Congestion: In New York City, where over a million person-hours are lost to traffic delays each day (costing an estimated over \$33 million a day), each additional *automobile* mile driven has a

⁷⁵ See footnote #72. For the same reason given there, GHG emissions for the DSNY fleet are likely to be somewhat lower than those used in this analysis based on the citywide fleet.

⁷⁶ See 1997 Federal Highway Cost Allocation Study Final Report http://www.fhwa.dot.gov/policy/hcas/final/toc.htm, last accessed 06-14-13.

- marginal external cost of 30 cents. ⁷⁷ Since a heavy truck has a congestion impact at least three times greater than that of an automobile, the congestion cost of each mile traveled would be about a dollar.
- Pavement damage: Heavy vehicles are responsible for the majority of pavement costs. Degraded roads increase noise and reduce safety and fuel efficiency. In 2013, New York City will spend \$136 million, or an average of \$175,000 per lane mile, to repair and resurface its roads. A 20,000-pound truck axle, which is close to the New York City DOT's legal limit, consumes a thousand times the pavement life of a 2,000-pound car axle.
- Air pollution: In New York City, despite strict regulation and improved emission-control technologies, motor vehicles contribute 10% of the particulate emissions and a quarter of the nitrogen dioxide emissions. Exposure to poor air quality is associated with asthma and other respiratory and cardiovascular illness and, in New York City, an estimated 6% of deaths.
- Accidents: Garbage trucks are 8 times more likely to produce pedestrian fatalities than are other heavy trucks.
- Worker safety: Sanitation work is one of the most dangerous occupations in the US, causing more injuries and fatalities than firefighting or policing. According to the Bureau of Labor Statistics (BLS), the fatality rate for sanitation work is ten times higher than the overall fatality rate for all other BLS categories: a sanitation worker has a 1 in 50 chance of dying from a work-related injury over a 45-year career. Non-fatal injuries from hurling up to seven tons of bagged waste into a truck on a given collection route, operating heavy equipment in traffic, or exposure to the elements, are common.
- Noise: Medical researchers have established a wide range of adverse health impacts due to noise pollution.⁸⁶ Economists have found that residential properties on noisy streets are worth less than properties on quiet streets.⁸⁷ According to the New York City Department of Environmental Protection, noise is the number one quality-of-life issue for city residents.⁸⁸ New Yorkers file

4-15

⁷⁷ Marginal external congestion cost for peak auto travel in New York City (31 cents/vehicle mile). Ian Parry, "Pricing Urban Congestion," Resources for the Future, Nov. 2008. Table 2. Marginal External Congestion Costs for Selected Urban Centers. See also Jose Holguin-Veras et al., "Integrative Freight Demand Management in the New York City Metropolitan Area" USDOT 2010 p.17 http://www.transp.rpi.edu/~usdotp/DRAFT_FINAL_REPORT.pdf, last accessed 06-14-13.

⁷⁸ FY2013 Executive Budget, Office of the Mayor, p. 151.

http://www.nyc.gov/html/omb/downloads/pdf/mm5_12.pdf, last accessed 06-14-13.

⁷⁹DSNY 3-axle 25-cubic-yard rear loaders have a gross vehicle weight rating (GVWR) of 72,000 pounds. New West Technologies, "LLC Multi-Fleet Demonstration of Hydraulic Regenerative Braking Technology In Refuse Truck Applications, Final Report" December 2011. p. 19. , last accessed 06-14-13.

⁸⁰ South Dakota DOT Briefing, "Truck Weights and Highways" September 24, 2003. p.2 http://www.sddot.com/transportation/trucking/docs/SDDOT_Truck_Briefing_2d.pdf, last accessed 06-14-13.

⁸¹ NYC DEP, "Air Pollution" http://www.nyc.gov/html/dep/html/air/index.shtml, last accessed 06-14-13.

⁸² Charles Komanoff and Members of Right Of Way, "People Killed by Garbage Trucks, 1994-97" Killed by Automobile: Death in the Streets in New York City 1994-1997," March 1999. p.35. http://www.carssuck.org/research/kba text.pdf, last accessed 06-14-13.

⁸³ See Robin Nagle's discussion of the risks of the job in *Picking Up: On the Streets and Behind the Trucks with the Sanitation Workers of New York City*, Farrar, Straus and Giroux, 2013. p. 57.

⁸⁴ Dino Drudi, "Job Hazards in the Waste Industry" Bureau of Labor Statistics, June, 1999. http://www.bls.gov/iif/oshwc/cfar0030.txt, last accessed 06-14-13.

⁸⁵ Nagle, p.53.

⁸⁶ E.g., http://www.who.int/docstore/peh/noise/Comnoise3.htm., last accessed 06-14-13.

⁸⁷ E.g., Jon Nelson, "Hedonic Property Value Studies in Aircraft and Road Traffic" in Baranzini et al eds. *Hedonic Methods in Housing Markets: Pricing Environmental Amenities and Segregation*. Springer, 2008. p. 67; also http://www.econ.psu.edu/papers/COST-

BENEFIT%20ANALYSIS%20AND%20TRANSPORTATION%20NOISE2.pdf, last accessed 06-14-13.

⁸⁸ http://www.nyc.gov/html/dep/html/noise/index.shtml, last accessed 06-14-13.

more official noise complaints related to garbage trucks than to any other noise source; in 2012, 5% of all the 311 noise complaints filed with the City were caused by garbage trucks.⁸⁹

Storage, handling and set-out of waste in bags or containers adversely affects the health and well-being of residents and building employees, and negatively affects the use of public space.

- Pest control: Rats spread disease and cause property damage. 90 Eradicating established nests involves poison and traps, which are costly and pose potential hazards to humans and wildlife. Researchers agree that the only long-term solution for minimizing rodent populations is to eliminate access to their primary food supply: garbage. The plastic bags (and pedestrian litter baskets) used for the collection of New York's waste do not prevent rats from ready access to a moveable feast of mammoth proportions. But when garbage is sealed in rigid containers, rat populations subside. 91
- Odors: The sight and smell of litter and trash pushed New York to the top of the heap in *Travel* and *Leisure*'s 2011 list of the dirtiest major cities in the country (while its garbage trucks helped it achieve first place in noise). 92 These quality-of-life issues have significant economic impacts for a city in which tourism is a 55-billion-dollar industry. 93 Conventional means of reducing odors from decomposing garbage, such as storage in refrigerated waste rooms with set-out in close coordination with scheduled collection, mechanical air purifiers, or increased collection frequency, are costly and energy-intensive.
- Building-employee safety: About half of the injuries to New York City Housing Authority building staff are due to handling garbage; the Authority's cost for dealing with these injuries is \$2.5 million a year.

In addition to avoiding mileage-based adverse impacts due to truck collection, built-in waste transport systems offer the further potential advantage that the heat produced by generators, fans, and other components may be captured in certain situations and used for productive purposes. One example of such an adaptation in connection with a pneumatic-waste-collection system has recently been implemented in a neighborhood in Stockholm. Heat captured from the system's generators and fans is distributed via coils in the sidewalk to provide snow-melting capability--thus avoiding the need for mechanical or manual snow-removal.

Another factor with regard to comparing AVAC and truck-based collection is the level of service offeredi.e., collection frequency. Manual/truck-based systems inherently involve the costs and inconveniences of staging and storing residential waste materials for at least several days at a time, since it is not practicable in New York City for municipal truck-based collections to be done more frequently than a few times a week (due to the inherent costs and adverse environmental and congestion impacts). And manual/truck-based collections are necessarily suspended over holidays or during storm events or other forms of natural or unnatural disasters.

Also to be considered are the benefits associated with reduced waste disposal that may be associated with pneumatic collection (along with reduced long-haul transport to remote disposal facilities). As noted above, reductions on the order of 12% in waste volumes requiring disposal would be expected with the

4-16

⁸⁹ http://www.theatlanticcities.com/neighborhoods/2013/04/yo-im-trying-sleep-here-new-yorks-wonderful-map-noise/5279/, last accessed 06-14-13.

⁹⁰ http://www.cdc.gov/rodents/., last accessed 06-14-13.

⁹¹ Sullivan, Robert Rats: Observations on the History and Habitat of the City's Most Unwanted Inhabitants. Bloomsbury. 2004. p.17.

⁹² http://www.travelandleisure.com/articles/americas-dirtiest-cities/2, last accessed 06-14-13.

⁹³ http://www.mikebloomberg.com/index.cfm?objectid=99248E01-C29C-7CA2-F7836024BB447AC6, last accessed 06-14-13.

⁹⁴ New York City Housing Authority Journal, "NYCHA Talking Trash: When It Comes to Garbage, Do the Right Thing: A message to residents from Deputy General Manager Carlos Laboy-Diaz on behalf of Property Management staff." March 2012. p. 1.

⁹⁵ Private collection of commercial wastes may be as frequent as 7 times a week.

economic incentives provided by pneumatic-based metering. With or without metering, to the extent that recycling is enhanced because of more-convenient generator-participation opportunities, and because of reduced cross-contamination between materials, less material would need to be remotely landfilled. In addition, the use of recycled as opposed to virgin materials in remanufacturing processes has significant energetic and greenhouse-gas benefits, as many researchers have found. Another potentially significant benefit is that it is difficult to collect source-separated organics system-wide in a dense urban environment by truck (for the storage/frequency reason mentioned above). The fact that tube-based systems make the possibility of such collection practicable means that organic-processing technologies such as anaerobic digestion, which could provide cost-effective, locally based disposal options, while also producing energy and reducing GHG emissions, represents another environmental and economic benefit (as discussed in greater detail below).

While it is difficult to economically quantify these benefits, they do have an economic component which is not reflected in the tables and graphs presented above.

INTEGRATED WASTE PROCESSING

Waste collection--the process that starts with source-segregated set-out of discarded materials by the generator, continues with the introduction of these materials into a collection vehicle or device, and ends after the materials have been transported to the initial "dump site"--is only the first step in the waste-management process. ⁹⁷ And it involves only a relatively small fraction of the overall GHG emissions associated with the management of discarded materials. The majority of GHG emissions--and fuel use-may be due to long-distance transport to a remote disposal facility and to the effects of disposal. This is certainly the case for discarded materials generated within New York City, since most of the city's non-recycled materials are exported to remote landfills where the decomposing waste releases more GHG than did the long-distance transport vehicles that carried it an average of three hundred miles (a six-hundred-mile round trip for a truck or train). ⁹⁸

Pennsylvania

Virginia

South Carolina

Figure 4-12. New York City's Remote Landfill Network (Source: Miller, 2007)

⁹⁶ E.g., Tellus Institute, *More Jobs, Less Pollution: Growing the Recycling Economy in the U.S.*, November, 2011, http://www.recyclingworkscampaign.org/2011/11/more-jobs-less-pollution/#more-160, accessed 01-23-13.

⁹⁷ This can be a transfer station, a facility for the initial processing of recyclable materials, or a disposal facility.

⁹⁸ Norman Steisel and Benjamin Miller, "Power From Trash", *New York Times*, 4-27-10; New York City Mayor's Office of Sustainability and Long-Term Planning, *PlaNYC*, April, 2012, http://www.nyc.gov/html/planyc2030/html/theplan/solid-waste.shtml, last accessed 01-27-13; Citizens Budget Commission, *Taxes In, Garbage Out*, May, 2012.

If the non-recyclable waste generated on Roosevelt Island could be processed for ultimate disposal on the Island, these adverse environmental and economic impacts would be avoided, while beneficial, locally usable products (e.g., biogas, steam, electricity, compost) could be produced. The fact that a pneumatic tube system allows the possibility of collecting source-separated kitchen waste and other compostable organic materials at a relatively small incremental cost increases the range of potentially practicable on-site processing options.

The Island's projected waste generation--some 36 tons per day overall, of which about 11 tons is expected to be recyclable and about 9 tons compostable--provides the initial screen for determining which, if any, on-site processing technologies might be practicable without importing additional material from off the Island (which, depending on the specific circumstances, might also be feasible). Given the relatively low volume of recyclables, and the variety of materials involved (metals, glass, plastics, mixed paper), it is unlikely that any on-Island processing of recyclables would be economically feasible--particularly for materials whose economic end-processing requires large-scale facilities (e.g., paper, metal), except, perhaps, at a bench-scale for academic purposes associated with the Cornell-Technion engineering campus (especially for plastics and glass). There are, however, potentially available technologies for on-site management of the non-recyclable waste fractions.

These technology alternatives can be divided into those that could accept most or all of the non-recyclable stream (either with or without pre-processing) and those that could accept only a source-separated, compostable organic fraction (i.e., a fraction collected via separate inlets). The first category includes conventional waste-to-energy technology (mass-burn or refused-derived-fuel incineration) and gasification. The second category includes in-vessel (aerobic) composting and anaerobic digestion as well as emerging technologies such as pyrolysis and hydrolysis.

Conventional waste-to-energy plants are unlikely to be considered practicable for the Island, given the waste volumes usually considered to be economically feasible (generally 100 tpd or more) as well as the general lack of public and political enthusiasm for such facilities, as evidenced by the paucity of new plant installations in the US since the 1980s. Gasification technologies, which produce even fewer GHG and airpollutant emissions than do current-generation waste-to-energy facilities, are beginning to be used in small-scale installations with input volumes comparable to those produced on the Island. The capital and operating costs of these facilities are significantly greater than those of landfilling or of the alternative disposal technologies (waste-to-energy incineration and composting/digestion), but when they are compared to the all-in costs of remote transport and landfilling, and the energy and environmental benefits are considered, these costs may be acceptable over the long-term.

The biological and chemical (non-gasification) technologies have the disadvantage of being able to treat only the organic fraction of the waste stream (which, depending on the process, can constitute somewhere between a third and two-thirds of the overall non-recycled waste stream), leaving the remainder for incineration or remote landfilling. But when all costs and benefits are considered, these technologies may be less-costly than gasification and, depending on the circumstances, less-costly than landfilling or incineration. They have the further advantage of being the most generally acceptable from a public point of view, which is one reason for the current level of interest in these technologies from businesses and localities in North America and Europe. They also have a significantly longer and broader record of demonstrated experience than do the alternative non-incineration technologies.

One way of providing an organics-only input stream would be to pre-process incoming mixed waste to separate out the processible stream using mechanical equipment designed for the purpose. ¹⁰¹ It is highly unlikely, however, that installing and operating such sorting equipment would be cost-effective at a

¹⁰¹ The "mixed waste" stream would not include recyclable metal, glass, plastic, or paper: it is assumed that these materials will have been separately collected via separate inlets.

4-18

E.g., Waste Management World, "Mobile Waste Gasification Units for Military Applications," 12-29-11.
 E.g., S.E. Nayono, Anaerobic Digestion of Organic Solid Waste for Energy Production, Karlsruher Institut fur Technologie, 2010, p. 34.

Roosevelt Island scale. (This would be particularly true for conventional, in-vessel [aerobic] composting, since its economics are driven primarily by the avoided cost of disposal, rather than by the relatively insignificant potential sales price of the primary product--compost.) A more practicable alternative--especially given the existence of a trunk-line pneumatic tube and terminal--would be to install separate inlets and container facilities for this fraction.

As noted above, it seems unlikely that source-separated organic collection will be considered practicable in the near term for the northern end of the Island. This is due to the infeasibility of retrofitting that existing development with interior inlets for organics, which would make such a system most convenient for use by building residents, as well as to the apparent preference of both residents and building managers to have building porters handle the transfer of source-separated materials from apartment hallways to the proposed new exterior inlets. However, as also noted above, by pre-installing tee-joints with the proposed new exterior inlets for metal/glass/plastic and paper, a third source-separated stream (organics) could be added at a later time at relatively low cost. For the as-yet-unbuilt Cornell campus, separate interior inlets could be installed in order to collect an organics fraction that would be suitable for composting or anaerobic digestion.

If an organics-processing facility handled only organics from the southern end of the Island, the expected daily input would be on the order of 3.5 tpd (about 30% of the projected 10.6 total tpd). If organics from the northern end of the Island were someday added, the total would be on the order of 6.5 tpd, and if food waste from the hospital were added, the total would be about 9.5 tpd.

This volume of waste is generally considered near the lower limit of economic viability for conventional anaerobic digestion of MSW. There are, however, a number of relatively new anaerobic digestion technologies that are designed to handle smaller volumes than this, and the development of economically viable small-scale anaerobic-digestion equipment is one of the current foci for global R&D efforts in this field. A number of U.S. universities, among them the University of California, Davis and the University of Wisconsin, Madison, have successfully piloted facilities at this scale. Another possibility for managing such relatively small volumes of organic MSW would be to combine their processing with a nearby anaerobic digestion facility for waste-water solids. Anaerobic digestion of sewage sludge is recommended in PlaNYC. Anaerobic digestion of sewage sludge is conducted at the nearby waste-water treatment plant in Greenpoint, Brooklyn (a distance of 3 miles from Roosevelt Island). Since MSW organics have more BTUs per pound than does sewage sludge, the addition of small fractions of MSW to a sewage-digestion facility could be economically beneficial, at a relatively small incremental cost.

The other type of technology that may be appropriate to Island-size waste volumes could be gasification. A gasification system could manage all non-recyclable waste projected for the Island (about 25 tpd) and would not require separate collection of organics. Gasification has been demonstrated over the past decade for MSW in applications ranging from cruise-ship lines to military installations, at scales ranging from 10 to 350 tpd. The capital cost of a 25 tpd-gasification facility might be around \$10 million.

It is likely that the most cost-effective energy product of the biogas or synthetic gas produced by an anaerobic digester or gasifier would be heat, rather than electricity or liquid fuel, given the costs of conversion technology for this relatively small volume of gas. The most cost-effective use for this heat, given the year-round demand for it, might well be water heating.

¹⁰² See survey results in Appendix A-5.

¹⁰³ E.g., DSM Environmental Services, Inc., *Hunts Point Food Distribution Center: Organics Recovery Feasibility*, 12-30-2005,

http://www.nycedc.com/ProjectsOpportunities/CurrentProjects/Bronx/HuntsPointVisionPlan/Documents/H POrganicsRecoveryFeasibilityStudy.pdf, last accessed 04-11-11.

Section 5 IMPLEMENTATION

- 1. RIOC: We recommend that Roosevelt Island officials view investment in an upgraded AVAC system within the larger Roosevelt Island development context as a way to:
 - reduce budget demands and make expense-planning more predictable
 - free staff time for other uses
 - save limited road access for buses, ambulances, and deliveries
 - save sidewalks and courtyards for pedestrians, cafés, and gardens
 - create space to serve new functions, e.g., a freight distribution facility which could help mitigate the street-congestion problems that the Cornell-Technion campus will produce
 - prevent noise and traffic-related impacts for the dense Northtown area between the Roosevelt Island bridge and the south-Island developments
 - reduce the Island's carbon footprint by cutting fuel use and GHGs
 - promote the Island as a model for 21st-century urban design

To accomplish these ends, RIOC would need to work with Cornell-Technion, Coler Hospital, and the Department of Sanitation to develop a long-term waste-management plan for the Island, including upgrades to the AVAC system within those plans.

The operational savings that could be obtained by replacing the existing terminal with an Upgrade-only system would pay back the upgrade capital costs within a few years. Operational savings from an Upgrade + Recyclables system would also provide a reasonable payback period. This would not be the case with a comprehensive upgrade (Upgrade +Recyclables +Commercial +Litter): the relatively modest operational savings would not in themselves support the required investment. However private-sector savings and potentially monetizable public externality benefits might support the required long-term investment. With help from NYC, RIOC could seek funds from the Empire State Development Corporation as well as from other State and federal agencies to augment contributions from RIOC's capital budget.

Any upgrades to the terminal might be accompanied by an analysis of the potential for more efficient land use, since a new terminal could free for other uses up to half an acre of land adjacent to the Motorgate Garage and the Island's only bridge. This land might support a freight-distribution center for handling not only the transport waste containers from the RIOC, Cornell, and Coler AVAC facilities, but for other inbound and outbound materials.

RIOC might also seek to power the AVAC facility with low-cost, sustainable electricity from sources such as Verdant Energy's East River tidal turbines, solar panels that could be placed on a new terminal building, and biogas from on-Island organic processing,

Our analysis of existing conditions showed that, except for an 800-meter section of trunk line, the original pipes could continue to be used. Whether or not RIOC expands the network, we recommend that the replacement pipe be relocated along Main Street, rather than along the East Channel. Locating the new section along Main Street would make it possible to add new waste sources such as recyclables or commercial waste without impacting the original pipes, many of which run underneath buildings where major repairs would be difficult. Locating the new pipe along Main Street would require opening the street, but locating a vital infrastructure underneath a permanently accessible right-of-way would simplify future maintenance. An installation along Main Street could be coordinated with other infrastructure upgrades, which are likely to occur during the construction of the Cornell-Technion campus, in order to reduce its cost.

When this suggestion for pipe relocation was presented to RIOC executives, they cautioned that construction projects that restrict vehicle access along Main Street, the island's only vehicular access, must be avoided if at all possible. RIOC suggested that there may be room for the replacement pipe inside the

existing utility corridor that carries a steam pipe along the East Channel. Another alternative might use parking spaces along Main Street instead of the main roadway, or a portion of the sidewalk on one side of the street. Whether the replacement trunk line is laid along Main Street or along the East Channel sea wall or in another location, new pipe will need to be installed to connect new inlets to the system. The impacts of this construction, like those of all infrastructure improvements, must be weighed against the potential benefits. Whether or not the system is expanded, the diverter valves connecting the gravity-fed chutes to the system must be replaced in order to realize the energy savings projected in this report. RIOC would need to coordinate with building management companies to arrange for these repairs.

Currently, RIOC owns the equipment and the Department of Sanitation pays the operating costs. The equipment upgrade would provide an opportunity to revisit this arrangement. Should Sanitation make a capital contribution to the upgrade costs in order to realize the net savings that reduced operating expenses would provide? Should RIOC take over operations? Should RIOC contract operations to a private carter? If Cornell builds a system, should RIOC and DSNY and Cornell share the cost of maintenance personnel?

We found that residents and business owners have a limited understanding of the AVAC system. RIOC could consider the equipment upgrade as an opportunity to create a thorough education campaign for all system users. RIOC could also consider offering ongoing performance feedback by including card readers and metering for residential refuse. If recyclables are included, RIOC could consider encouraging building managers to create a pilot program that made able-bodied residents responsible for putting recyclables into new exterior inlets so that recyclables bins could be removed from garbage rooms and staff time could be used for other purposes.

- 2. Cornell-Technion: As discussed above, it would be inefficient to add the new campus to the existing RIOC network because sending the anticipated volume of material to RIOC's terminal would drive up energy use and maintenance costs. It would, however, be efficient for Cornell to build its own terminal on or near its campus in order to: avoid collection-truck traffic; reduce adverse quality-of-life impacts due to conventional waste-staging and -storage; capture space savings by reducing the need for waste rooms and staging areas; contribute to the hardening of the campus to potential flood threats by reducing the need for open truck bays below the flood-line on the building walls along the shoreline; deploy labor saved from not driving or carting waste to containerized compacting equipment for other grounds-keeping tasks; facilitate source-separation and onsite processing of material (further reducing the impacts of transport and disposal); and facilitate research by metering and tracking waste flows. In addition, Cornell could consider coordinating with RIOC to collect material from South Point and Four Freedoms Parks and other adjacent sources. While we found that Roosevelt Island residents are not currently supportive of the idea of disposing of source-separated food waste in outdoor inlets, the new buildings on the Cornell campus could include inlets for organics alongside those for refuse and recyclables. By processing this food waste onsite, Cornell could reduce its off-Island waste transport by about a third, while greatly reducing the number of truck trips through the community.
- a. We recommend that Cornell consider pneumatic collection not merely as a strategy for handling waste, but as a way to integrate waste-management into the design process for the new campus as well as into its engineering curriculum. The possibility of analyzing inputs with keyed inlets and volume-measuring tools, as well as the ability to design and control collection cycles, could allow students and faculty to test and analyze innovative waste-management techniques.
- b. We recommend that Cornell work with RIOC to find synergies between their respective waste-handling systems. One possibility might be using organics or recyclables from the North end of the Island as inputs to on-site processing facilities that Cornell may develop. Another possibility might be coordinating off-Island transport of all of the Island's discarded materials.
- c. We recommend that Cornell encourage its engineers to consider pneumatic collection in conjunction with their design of the campus power supply, delivery logistics, telecommunications routing, and heating, ventilation, and cooling systems in order to take full advantage of potential synergies between systems (e.g., recovering waste heat, employing shared service corridors) to reduce the overall environmental impact of the campus.
- d. We recommend that Cornell make the pipe network and waste-processing facilities legible on campus by encouraging its master planners and designers to integrate the pneumatic network with the

landscape of the new campus. Tubes could be incorporated into canopies and walkways, sculpture, lighting, seating or other features as landscape infrastructure. ¹⁰⁴ And since the facilities are clean and essentially automated, the processes could be made visible to campus visitors, students and employees with large windows and explanatory signage.

- e. We recommend that Cornell work with RIOC to explore a flat-car electric shuttle, or similar innovative technology, for transport of deliveries to the campus, and containerized waste away from the campus. This on-Island shuttle system could be used in conjunction with a freight distribution/receiving facility that could be built on the extra space inside the current AVAC footprint. Cornell and/or RIOC may also want to consider a barge-freight system to address the needs for handling outbound waste containers and inbound freight.
- 3. Department of Sanitation: No new funding would be required on the part of DSNY. Rather, a new terminal would significantly reduce the current cost of operation for the Department of Sanitation. An even more important benefit for the Department may be the opportunities offered by the Roosevelt Island installation to test not only the possibilities offered by pneumatic technology, but related techniques that may prove beneficial in other New York City situations even where pneumatic systems are not installed. Innovations potentially associated with an upgraded pneumatic system may include: (a) unit-pricing; (b) processing of source-separated organics; (c) combined collection of residential and commercial waste. All of these components, in themselves, may provide useful New York City-specific experience that may be of benefit in other City locations, whether or not pneumatic collection is also used in those other locations. We recommend that DSNY cooperate with RIOC and Cornell-Technion to develop an Island-wide waste-management plan that could provide such a citywide model. DSNY could cooperate with the Business Integrity Commission (BC) to pilot an integrated public-and-commercial waste collection program on the Island. DSNY may also want to consider modifying the current RIOC/NYC cost-share arrangement in order to obtain mutual reductions in current and projected costs.
- 4. Mayor's Office/PlaNYC: The Mayor's Office is the appropriate entity to play a lead role in encouraging coordination between RIOC, Cornell-Technion, DSNY, and BIC to achieve PlaNYC's goals of waste-avoidance and -diversion, as well as to minimize the City's waste-management costs. And it could assist RIOC in accessing supplemental City, State, and federal funding sources.

¹⁰⁴ Contemporary designers recognize the importance of infrastructure: "By revealing the multi-dimensional complexities, externalities and cross-dependencies within the infrastructures of waste and water, energy and mobility, food and fuel...[the] landscape...can be cultivated as both a system and a strategy for contemporary urbanism that is flexible, contingent, and multidimensional" http://www.gsd.harvard.edu/#/events/landscape-infrastructure.html, accessed 02-01-13.

Section 6

METRICS

Because of New York's population density and attendant waste volumes, as well as the severity of its surface-transport congestion, the value of its real estate, the volume of its air and noise pollution, and the negative aesthetic impacts of the garbage bags heaped on its streets (with accompanying litter, odor, and rats--all of which also have adverse economic consequences for tourism), much of the City offers the kind of situation where pneumatic collection has been found to be desirable, practicable, and economically viable in other countries. However, since most areas of New York City are already built-up, and since retrofitting existing developments with pneumatic equipment is generally more costly and logistically complicated than is the case with installing pneumatic tubes during the construction phase of new developments--and also because the economically important space-savings associated with pneumatic systems are less likely to be captured in already-built buildings--it is likely that pneumatic systems will spread only gradually in the City as new developments are built. One possible such new development, where the possibility of a pneumatic system has been suggested by its sponsor, is the newly launched Hudson Yards project in Manhattan. ¹⁰⁵

New York's rural and suburban areas are unlikely to meet the density criteria that would make them suitable candidates for pneumatic collection. To the extent that New York State's other large cities do offer areas where pneumatic collection, at least of the stationary-terminal sort, might be economically and operationally practicable, it is highly likely that this development pattern--pneumatic installations in new projects rather than retrofits in already built-up areas--will hold true for them as well.

Almost any pneumatic installation could be expected to produce safety and public-health benefits due to reduced particulate emissions, noise emissions, accidents, and disease vectors. Quality-of-life benefits could be expected from reduced congestion, visual nuisances, and improved levels of service and reliability. Economic benefits in the form of space and labor savings, as well as enhanced marketability, can be expected on the part of waste generators. And energetic and environmental benefits can be expected due to the substitution of electrical energy for fossil-derived transportation fuel. But the question of overall reductions in BTU use or GHG emissions will depend on the specific characteristics of the given pneumatic installation in relation to conventional collection options.

Because of the relatively higher costs associated with the installation of pneumatic systems, the development of new pneumatic-waste-collection facilities is not expected to be a significant source of new economic activity in New York in the near-term.

¹⁰⁵ http://www.cityrealty.com/new-york-city-real-estate/carters-view/related-posts-new-renderings-information-hudson-yards-project/carter-b-horsley/39962, accessed 10-11-11.

Section 7

CONCLUSIONS

This study compared three options for updating an existing pneumatic waste-collection system on Roosevelt Island with the alternative of conventional, truck-based collection.

- An Upgrade-Only alternative (one waste stream) that would continue to accept only one waste fraction, refuse, from residential sources only;
- an Upgrade + Recycling alternative (three streams) that would include, in addition to refuse, the two separate recyclable streams required by New York City local law to be source-separated: metal/glass/plastic and mixed paper/old corrugated cardboard;
- an Upgrade + Recycling + Commercial + Litter alternative (three streams) that would also accept
 material from commercial generators (businesses along Main Street) and from sidewalk litterbins
 along Main Street.

These upgrade scenarios did not include:

- Organics: We eliminated the separate collection of a fourth fraction, compostable organics, as a near-term option due to a variety of logistical, cost, and public-preference hurdles. It is possible (and it may be conceptually desirable) to include separate organics collection at a future stage; this might be accomplished at a relatively modest cost penalty (vs. the cost of installing inlets for a fourth fraction at the same time as the initial upgrade) if tee-joints that could accommodate this fourth fraction were installed at the same time as inlets for the additional recyclable fractions.
- Waste from the Cornell-Technion campus: We dismissed the option of including material from the planned Cornell-Technion university campus at the Island's southern end due to the energetic and economic inefficiencies that would be associated with transporting that amount of additional material (a projected 8.3 tons per day at full buildout)¹⁰⁶ that distance. The Cornell-Technion campus will generate enough material to make practicable a separate pneumatic system, and a separate system would offer planning flexibility and operational advantages over a system combined with waste from the northern, residential end of the Island. ¹⁰⁷
- Waste from Coler Hospital: Because the volume of non-hazardous waste generated by
 the one hospital that will remain on the Island after the Cornell-Technion campus is built
 also makes a separate terminal both practicable and desirable, we rejected the option of
 including Coler Hospital waste in the center-Island system.
- Park litter: Litter baskets from the two parks at either end of the Island were also eliminated from detailed consideration because it would be much more economically and environmentally efficient to include that material with separate Cornell-Technion and hospital terminals.

We compared the pneumatic upgrade options to conventional, truck-based collection (the Manual Alternative) and to the operations of the current, 38-year-old pneumatic system (the No-Action Alternative).

¹⁰⁶ Full build-out is expected to be completed in 2038. Cornell NYC Tech, op. cit.

¹⁰⁷ While containerized waste from a campus-based terminal would need to be transported to the bridge located across the Island, this should be addressed with RIOC as part of a larger strategy for handling all freight traffic to the campus.

We found that:

- Energy demand and GHG emissions for all of the pneumatic alternatives would be higher than they would be with conventional collection. Depending on the pneumatic alternative, incremental BTU use would be between 25% and 70% higher, while GHG emissions would be between 35% and 100% greater.
- Truck miles would not be reduced when only residential refuse is collected by pneumatic tube, but they would be cut by 10% if residential recyclables were included and by 70% if all Main Street commercial and litter-bin wastes were managed pneumatically. In this last scenario, there would be no on-Island collection-truck miles traveled.
- Performance and quality-of-life improvements would be produced by the pneumatic systems due
 to: multiple daily collections versus collections several times a week; containerization of waste at
 the terminal eliminating the need for an intermediate dray and additional handling at a transfer
 station; reductions in local truck emissions; the potential use of low-carbon energy sources to
 provide the electric power for the system.
- The costs of all the alternatives considered would be significantly less than those of the existing (No-Action) AVAC system. This is due to the fact that the still-operating original equipment is experiencing significant maintenance costs as it nears the end of its expected life, and also to the fact that it is energy- and labor-intensive relative to current technology.
- Relative to the costs of conventional collection, the direct operating costs for the pneumatic upgrade alternatives--*not* including debt service--would be 10 to 25% less expensive, while perton capital costs would be 7 to 13 times higher. Net Present Value Costs are therefore 4.8 to 9.1 times higher than those of conventional collection.
- These NPV differences could be offset if externality benefits on the order of \$0.3 to 1.1 million per year could be achieved. Potential savings to waste generators (building owners) from decreased space, labor, and equipment costs, as well as other possible public benefits (e.g., economic and environmental savings from reduced public-health and public-safety impacts, from reduced congestion- and roadway-maintenance costs, from quality-of-life improvements, and from reduced long-distance transport and disposal) may make this level of savings practicable. Space and labor savings for waste generators, alone, might produce savings of \$1m per year. A range of other environmental, public-health-and-safety, and quality-of-life benefits associated with pneumatic collection might offer other monetizable savings to add to this calculus.

The costs and efficiencies of conventional collection vary greatly depending on whether the waste is in bags or containers (for pickup by rear-loader or roll-on/roll-off truck); the ratio of refuse to recyclables; the waste-generation density of the route (how much waste is collected at each stop, how many stops per mile); and the length of the travel distances from the truck's garage of origin to the collection route and from the end of the collection route to the dump site. The costs and efficiencies of pneumatic collection vary greatly depending on the length of the network; the volume of material collected; the number of waste fractions; and the number of inlets. The comparative economic and environmental impacts of the two system types therefore will depend on specific local conditions. In the case of Roosevelt Island, trucks--if it were possible to use them for residential refuse collection given the severe space and operational constraints imposed by the Island's development plan--would require less energy and produce fewer greenhouse gas emissions than would tubes, while operating at a lower net cost. But the other impacts conventional collection would produce also need to be considered. In addition to the effects of this collection method on the overall waste-management system (the lost opportunities for waste-reduction via the incentive of metering, less-effective source-separation for recycling, and the greater difficulties of separate organics collection), and in addition to the quality-of-life impacts of truck collection outlined in

this study, the various public health and economic benefits due to a reduction in truck miles and the elimination of set-out and staging of waste on city streets would need to be calculated. This is an area in which further research is needed.

Another area meriting further investigation is the optimization of pneumatic-system design and operation. The material used for fabricating the tube, the diameter of the tube, and various other design and operational characteristics could have a significant effect in reducing energy consumption, costs, and life-cycle emissions. As in the case of automobiles, computers, and other electronics, the expanded adoption of pneumatic systems will doubtless produce innovations in system efficiencies.

This study finds that new equipment, combined with ongoing preventive maintenance for the replacement of system components as needed, would extend the life of the existing tube network indefinitely while permitting the currently under-utilized facility to be expanded for the collection of source-separated recyclables and commercial and litter-bin waste. Perhaps more importantly, this study provides a basis for RIOC, the Department of Sanitation, the Mayor's Office of Sustainability and Long-term Planning, and Cornell-Technion University to consider the relative cost of pneumatic collection within a larger waste-management, transportation, and urban planning context. Seen from this larger perspective, the existing AVAC network presents a unique opportunity to create a New York City model for sustainable civic design.

- Ajuntament de Barcelona. Edificios con Sistema Neumático. Ordenanza General del Medio Ambiente Urbano de Barcelona (OMA), 2007.
 - http://w3.bcn.es/V04/Serveis/Ordenances/Controladors/V04CercaOrdenances_Ctl/0,3118,200713899_2007 26005_2_169473778,00.html?accio=detall,.
- Al-Ghamdi, Abdullah Saeed, and Asad Seraj Abu-Rizaiza. "Report: Pipeline Transport of Solid Waste in the Grand Holy Mosque in Makkah." *Waste Management & Research* 21, no. 5 (October 1, 2003): 474–479. doi:10.1177/0734242X0302100510.
- Bravo, Arthur C. "Environmental Systems at Walt Disney World." *Journal of the Environmental Engineering Division* (December 1975): 887–95.
- Citizens Budget Commission. *Taxes In, Garbage Out: The Need for Better Solid Waste Disposal Policies in New York City.* Citizens Budget Commission, May 2012. http://www.cbcny.org/sites/default/files/REPORT_SolidWaste_053312012.pdf.
- City Development Administration Traffic Administration. *Authority for Vacuum Systems for Waste. Response to Commission from the City Development Committee and the Traffic and Waste Management Committee*. Service Statement. Stockholm: City Development Administration Traffic Administration,, October 2008. http://fasttrash.org/library/archival-materials/.
- http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/greenhousegas_2011.pdf.
- Clabsa and Ajuntament de Barcelona. *Pla Tècnic 2006 de Recollida Pneumàtica de Residus: Avanç Econòmic*. Ajuntament de Barcelona, 2006. http://fasttrash.org/library/archival-materials/.
- ——. Plec d'Especificacions Per a Installacions De Recollida Pneumàtica a l'Interior Dels Edificis, n.d. Plec d'Especificacions per a Installacions de Recollida Pneumàtica a l'Interior dels Edificis." http://www.clabsa.es/pdf/recollida_pneumatica/plec_especificacions.pdf.
- Dellaire, Gene. "Pneumatic Waste Collection on the Rise." Civil Engineering ASCE (August 1974): 84.
- Deputy City Manager. *Vacuum Waste Collection Systems*. Unpublished staff report. City of Toronto, March 19, 2008. www.toronto.ca/legdocs/mmis/2008/ex/.../backgroundfile-11780.pdf.
- Douglas, Mary. Purity and Danger: An Analysis of Concepts of Pollution and Taboo. London: Routledge & K. Paul, 1966.
- Drudi, Dino. *Job Hazards in the Waste Industry*. Bureau of Labor Statistics, June 1999. http://www.bls.gov/iif/oshwc/cfar0030.txt.
- Eisted, Rasmus, Anna W. Larsen, and Thomas H. Christensen. "Collection, Transfer and Transport of Waste: Accounting of Greenhouse Gases and Global Warming Contribution." *Waste Management & Research* 27, no. 8 (November 1, 2009): 738–745. doi:10.1177/0734242X09347796.
- DSM Environmental Services. *Analysis of New York City Department of Sanitation Curbside Recycling and Refuse Costs*. Final Report. Natural Resources Defense Council, May 2008. http://docs.nrdc.org/cities/files/cit_08052801A.pdf.
- ——. Hunts Point Food Distribution Center: Organics Recovery Feasibility, December 30, 2005. http://www.nycedc.com/ProjectsOpportunities/CurrentProjects/Bronx/HuntsPointVisionPlan/Documents/H POrganicsRecoveryFeasibilityStudy.pdf.
- Facanha, Cristiano, and Arpad Horvath. "Evaluation of Life-Cycle Air Emission Factors of Freight Transportation." *Environmental Science & Technology* 41, no. 20 (October 1, 2007): 7138–7144. doi:10.1021/es070989q.
- Gibbs & Hill, Inc. Research Study on Refuse Collection for Welfare Island for New York State Urban Development Corporation. New York State Urban Development Corporation, 1970. Roosevelt Island Operating Corporation.
- Hawkins, Andrew J. "Recycling Mandate Passed for New Buildings." *Crains New York*, December 11, 2012. http://www.crainsnewyork.com/article/20121211/REAL_ESTATE/121219978.
- Hedonic Methods in Housing Markets Pricing Environmental Amenities and Segregation. New York: Springer, 2008. http://public.eblib.com/EBLPublic/PublicView.do?ptiID=364311.
- Iriarte, Alfredo, Xavier Gabarrell, and Joan Rieradevall. "LCA of Selective Waste Collection Systems in Dense Urban Areas." *Waste Management* 29, no. 2 (February 2009): 903–914. doi:10.1016/j.wasman.2008.06.002.

- Jackson, Stephen B. "An In-Depth Report on the Development, Advancement, and Implementation of Pneumatic Waste Collection Systems and A Proposed Program for the Practical Evaluation of such a System in Terms of Waste Disposal Parameters, Engineering Design, and Economic Costs," 2004. http://www.dtic.mil/dtic/tr/fulltext/u2/a471879.pdf.
- John Metcalfe. "Yo, I'm Trying to Sleep Here! New York's Wonderful Map of Noise." *The Atlantic Cities Place Matters*, April 15, 2013. http://www.theatlanticcities.com/neighborhoods/2013/04/yo-im-trying-sleep-here-new-yorks-wonderful-map-noise/5279/.
- Jon Nelson. "Cost-Benefit Analysis and Transportation Noise." presented at the NAE Workshop on Transportation Noise Control Technology, Cambridge MA, February 23, 2007. http://www.econ.psu.edu/papers/COST-
 - BENEFIT%20ANALYSIS%20AND%20TRANSPORTATION%20NOISE2.pdf.
- Kogler, Thomas. *Waste Collection*. ISWA Working Group on Collection and Transportation Technology, 2007. http://www.iswa.org/uploads/tx_iswaknowledgebase/ctt_2007_2.pdf.
- Komanoff, Charles. *Killed by Automobile: Death in the Streets in New York City 1994-1997*. New York City: Right of Way, March 3, 1999. http://www.cars-suck.org/research/kba_text.pdf.
- Kown, BT, and Kass, EA. "Put Refuse in a Pipe; Let Air Do the Work." American City, June 1973.
- Laboy-Diaz, Carlos. "NYCHA Talking Trash: When It Comes to Garbage Do the Right Thing." *NYCHA Journal*, March 2012. http://www.nyc.gov/html/nycha/downloads/pdf/j12mare.pdf.
- Mayor Michael Bloomberg. "The City of New York Executive Budget Fiscal Year 2013." Office of Management and Budget (OMB), May 3, 2012. http://www.nyc.gov/html/omb/downloads/pdf/mm5_12.pdf.
- Mayor's Office of Long-term Planning & Sustainability, *Inventory of New York City Greenhouse Gas Emissions*. New York: City of New York, 2011.
- Mayor's Office of Long-term Planning & Sustainability. *PlaNYC Chapter on Solid Waste*. New York: City of New York, 2011. http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/planyc 2011 solid waste.pdf.
- Mikebloomberg.com. "NYC's Tech and Tourism Industries Spurs Economic Growth." Transcript. May 12, 2013.
- Mikebloomberg.com. "NYC's Tech and Tourism Industries Spurs Economic Growth." Transcript. May 12, 2013 http://www.mikebloomberg.com/index.cfm?objectid=99248E01-C29C-7CA2-F7836024BB447AC6.
- Nagle, Robin. *Picking up: On the Streets and Behind the Trucks with the Sanitation Workers of New York City*. New York: Farrar, Straus and Giroux, 2013.
- National Research Council of the National Academies. *Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use*. Washington DC: the National Academies Press, 2010.
- Nayono, S.E. Anaerobic Digestion of Organic Solid Waste for Energy Production (BOOK??). Karlsruher Institut fur Technologie, 2010.
- New West Technologies, and Shorepower Technologies. *Multi-Fleet Demonstration of Hydraulic Regenerative Braking Technology in Refuse Truck Applications*. Final Report. New York State Energy Research Development Authority, December 2011. http://bit.ly/13b9Wd0.
- New York City Department of Sanitation. "Comprehensive Solid Waste Management Plan." December 1992.
- New York State Urban Development Corporation & Welfare Island Development Corporation. *Welfare Island:* An Interim Report. New York State Urban Development Corporation & Welfare Island Development Corporation, 1970.
- NYC Bonds. http://nycbonds.org/NYW/pdf/2013/NYW_2013_AA_Adj_Rate.pdf. Accessed December 19, 2012.
- NYC DCAS. Core Report, Facility-Level Energy Cost, Usage, and CO2e Emissions, April 2011.
- NYC Dept. of City Planning. *Chapter 8 The Quality Housing Program*,. *Zoning Code*, 2011. www.nyc.gov/html/dcp/pdf/zone/art02c08.pdf.
- Overman, Jack Preston, Terry G Statt, Municipal Environmental Research Laboratory, Hittman Associates. Evaluation of the Refuse Management System at the Jersey City Operation Breakthrough Site. Utilities Demonstration Series: v.3. Cincinnati: Municipal Environmental Research Laboratory, 1977. http://catalog.hathitrust.org/Record/000257297.
- Parry, Ian W.H. *Pricing Urban Congestion*. Discussion Paper. Washington DC: Resources for the Future, November 2008. http://www.rff.org/rff/Documents/RFF-DP-08-35.pdf.
- Skumatz, Lisa A. "FAQ: Frequently Asked Questions on PAYT." Skumatz Economic Research Associates, Inc. (SERA), 2008. http://www.paytnow.org/PAYT_CO_faqpaytSERA_v6.pdf.
- South Dakota Department of Transportation. "SDDOT Briefing Truck Weights and Highways." September 24, 2003. http://www.sddot.com/transportation/trucking/docs/SDDOT Truck Briefing 2d.pdf.

- Spielmann, Michael, and Roland Scholz. "Life Cycle Inventories of Transport Services: Background Data for Freight Transport (10 Pp)." *The International Journal of Life Cycle Assessment* 10, no. 1 (January 1, 2005): 85–94. doi:10.1065/lca2004.10.181.10.
- Springer, J.F. "Iron and Steel Sewer Pipe." Municipal Engineering L1, no. 3 (September 1916): 87.
- Steisel, Norman, and Benjamin Miller. "Power From Trash ..." *The New York Times*, April 28, 2010, sec. Opinion. http://www.nytimes.com/2010/04/28/opinion/28steisel.html.
- Sullivan, Robert. *Rats: Observations on the History and Habitat of the City's Most Unwanted Inhabitants*. New York, NY: Bloomsbury, 2005.
- Teerioja, Nea, Katja Moliis, Eveliina Kuvaja, Markku Ollikainen, Henna Punkkinen, and Elina Merta. "Pneumatic Vs. Door-to-door Waste Collection Systems in Existing Urban Areas: a Comparison of Economic Performance." *Waste Management* 32, no. 10 (October 2012): 1782–1791. doi:10.1016/j.wasman.2012.05.027.
- Tellus Institute, and Sound Resource Management. *More Jobs, Less Pollution: Growing the Recycling Economy in the U.S.* November 2011. http://www.recyclingworkscampaign.org/2011/11/more-jobs-less-pollution/#more-160.
- U.S. Department of Transportation. *Transportation Investment Generating Economic Recovery (TIGER) Grant Program (TIGER Benefit-Cost Resource Guide*. Guide. February 1, 2012. http://www.dot.gov/sites/dot.dev/files/docs/TIGER_BCA_RESOURCE_GUIDE.pdf.
- Waste Management World. "Mobile Waste Gasification Units for Military Applications." November 2, 2011. http://www.waste-management-world.com/articles/2011/11/mobile-waste-gasification-units-for-military-applications.html.
- Whitmore, Gregory. *Nature Abhors A Vacuum*. Video, Documentary, 2010. http://fasttrash.org/exhibition/roosevelt-islands-avac/.

Appendix A: Data Collection A-1: Volumes, Types, Sources

Roosevelt Island Costs to Convert to 25 Yard Truck Pick-up

Roosevelt Island Containerized Tonnage for Calendar Year 2009

Commodity	Refuse (24)	Refuse (24) Bulk		(27)	MGP
·		(25)			(29)
Totals	2069.81	835.73		391.	61 295.52
tnd 365	5 6707123	•	•	•	

Roosevelt Island Containerized Tonnage for Calendar Year 2008 (January 1 2008 through December 31 2008)

Commodity	Refuse (24)	Bulk	Paper	(27)		MGP
-		(25)				(29)
Totals	2129.18	780.36			423.59	240.82

Roosevelt Island Containerized Tonnage for Calendar Year 2007: (January 1 2007 through December 31 2007)

Commodity	Refuse (24)	Bulk (25)	Paper (27)		MGP (29)
Totals	2113.76	832.21		390.69	241.78

Costs of adding a Truckshift per year.

1) Each Truck needs 2 posts which become 3 FTE due to the absence factor

Posts	FTE
2	3

0.761 4) Dump on Shift \$5.80 per load

Costs of 45 Cubic Yard Container RO/RO per year.

45 Cubic Yard Container Pick-up						
Amount	Posts	FTE				
4 Times per week	4	1				

2) The average Sanworker costs calculation as of 6/1/2010							
Average Cost	Benefits Costs @ 67.12%	Total Costs per Sanworker					
\$65,532.00	\$43,985.08	\$109,517.08					

CY 2007-2009 Average Tonnage

							3) Additional Costs
Commodity	Refuse (24)	Bulk (25)	Paper	` '		ratio paper/total gen	25 Cubic Yard Differential @ \$43.44 per Day for 300
Totalo			 			~	
Totals	2104.3	816.1		402.0	259.4	0.145	\$13.032.00
							Prod Ref 10.7/Recy 6.2 tons Differential @ \$12.72 for
tpd 365	5.7650685	2.23589		1.101269406	0.71061	0.094	300 day year per post
Weekly Amount						ratio mgp/tg	\$3.816.00
Commodity	Refuse	Bulk	Paper	(27)	MGP		
	(24)	(25)			(29)	ratio ref-bulk/tg	

Convert to Start Trucks	Tons ZWA	Trucks	Daily Posts (2	FTE	Costs @	Differentials	Dump on shift costs	Total Costs
		ZWA	Posts Per Truck)		\$109,517.08 per	per post	QW01	
			·		SW			
Refuse	40.5	4	1.3	2.0	\$219,034	\$17,376	\$58.00	\$236,468

5.0

Δd	dit	ini	าลเ	Cos	ete

RO/RO Pickup Differential @ \$92.82 per Day for 208 day year						
\$19,306,56						

Costs @ \$109,517.08 per SW		Dump on shift costs QW01	Total Costs
\$109,517.08	\$19,307	0	\$128,823.64

Cost Benefit Analysis Conclusion using 6/10/2010 Headcount Data							
Regular House Hold Pick-up	\$236,468						
RO/RO Pick-up	\$128,824						
Saving for using EZ-Pack	\$107,645						

40.5

Note:

Totals

The above data was extracted from the recorded scale weights at the location via hand written 202's

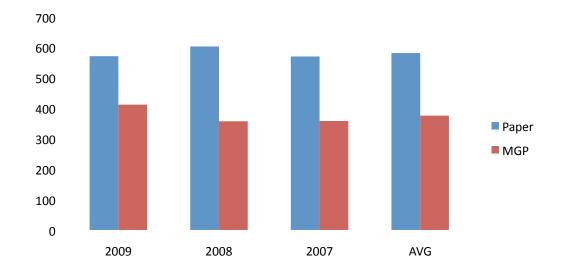
In Calendar year 2007, 128.9 tons of refuse was collected by rear loader, allocated to material type 84 in section QW016, total refuse tonnage would have been 2242.66, had it been collected via containerization.

There are no such findings for calendar year 2008 or 2009.

#'s in () next to commodity name are the SCAN material code numbers

Truck Conversions uses the targeted TPTS amount and divided it into the ZWA tonnage.

Dump on shift FY2010 Average used for QW01 are 4.8% Refuse


THIS SPREADSHEET PROVIDED BY STEVEN BRAUTIGAM, NYC DSNY TO BENJAMIN MILLER, 6-30-11

Yellow cells added by Benjamin Miller

Ref1-DSNY-Roosevelt Island FY 10.xlsx	DS Data	A-1-1

*

		Paper	MGP
	2009	571.11	411.89
	2008	603.09	357.19
	2007	570.19	358.15
AVG		581.46	375.74
TPD		1.59	1.03

^{*}adjusted to account for South Town private carter, by adding Jan-Jun 2010 figures from confidential industry source to each DS yr (2009-2007)

Ref-1/Comp	oostable									
	Refuse	HI/HD*								
2009	2,069.81	402.37								
2008	2,129.18	413.91								
2007	2,242.66	435.97								
avg	2,147.22	417.42								
tpd	5.88	1.14								
*compostat	*compostable fraction based on DSNY waste composition study:									
http://www.i	http://www.nyc.gov/html/nycwasteless/downloads/pdf/wastecharreports/wcsfinal/report/wcs 04 V1 1 studyoverview.pdf, accessed 8-5-11,									
Table 1-17,	able 1-17, pp.45ff: high density/high income—ri.compostable.xlsx [Reference 2]									

Ref2/data					
Material Grp	Material Suborn	Material Category	% of Citywide Waste Stream	%Citwide REFUSE Stream	Rey Subindica tor
Paper	ONP	Newspaper Newspaper	7.54%		R P
Paper	OCC	Plain OCC/Kraft P	2.44%	1.16%	
Paper	Mxd P	High Grade P	0.90%	0.68%	
Paper	Mxd P	Mxd Low Grade P	10.33%	8.35%	
Paper	Mxd P	Phone Bks/Paperbacks	0.94%	0.49%	
Paper	Mxd P	P Bags	0.62%	0.70%	
Paper	Bev Cartons	Polycoated P Containers	0.50%		R Bev Cart
Paper	Compostable P	Compostable/Soiled Paper/Waxed/OCC/Kraft	5.64%	6.67%	
Paper	Compostable P	Single Use P Plates, Cups	0.43%	0.52%	
Paper	Other P	Other Nonrecyclable P	0.69%	0.70%	
Paper Total		,	30.04%	23.32%	
Plastic					
Glass					
Metal					
Organics	Yard	Leaves and Grass	3.29%	4.01%	NR Other
Organics	Yard	Prunings	0.77%	0.94%	NR Other
Organics	Wood	Stumps/Limbs	0.16%	0.19%	NR Other
Organics	Food	Food	17.70%	21.40%	NR Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.18%	1.42%	NR Other
Organics	Wood	Non-C&D Untreated Wood	0.19%	0.22%	NR Other
Organics	Textiles	Non-Clothing Textiles	1.36%	1.64%	NR Other
Organics	Textiles	Clothing Textiles	2.50%	3.03%	NR Other
Organics	Textiles	Carpet/Upholstery	1.23%		NR Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Producs	3.20%	3.89%	NR Other
Organics	Misc Organic	Animal By-Products	1.10%		NR Other
Organics	Misc Organic	Rubber Products	0.28%		NR Other
Organics	Textiles	Shoes	60.00%	0.72%	NR Other
Organics	Textiles	Other Leather Products	0.10%		NR Other
Organics	Misc Organic	Fines	3.61%		NR Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.90%		NR Other
Organics	Misc Organic	Misc Organics	0.72%		NR Other
Organics Total			38.89%	47.05%	
http://www.nyc.gov/html/nycwasteless/downloads		rts/wcsfinal/report/wcs 04 V1 1 studyoverview	w.pdf,		
accessed 8-5-11, Table 1-17, pp.45ff: high density	/high income				

Ref2/data					
Material Grp	Material Suborn	Material Category	% of Citywide Waste Stream	%Citwide REFUSE Stream	Rey Subindica tor
Paper	ONP	Newspaper Newspaper	7.54%		R P
Paper	OCC	Plain OCC/Kraft P	2.44%	1.16%	
Paper	Mxd P	High Grade P	0.90%	0.68%	
Paper	Mxd P	Mxd Low Grade P	10.33%	8.35%	
Paper	Mxd P	Phone Bks/Paperbacks	0.94%	0.49%	
Paper	Mxd P	P Bags	0.62%	0.70%	
Paper	Bev Cartons	Polycoated P Containers	0.50%		R Bev Cart
Paper	Compostable P	Compostable/Soiled Paper/Waxed/OCC/Kraft	5.64%	6.67%	
Paper	Compostable P	Single Use P Plates, Cups	0.43%	0.52%	
Paper	Other P	Other Nonrecyclable P	0.69%	0.70%	
Paper Total		,	30.04%	23.32%	
Plastic					
Glass					
Metal					
Organics	Yard	Leaves and Grass	3.29%	4.01%	NR Other
Organics	Yard	Prunings	0.77%	0.94%	NR Other
Organics	Wood	Stumps/Limbs	0.16%	0.19%	NR Other
Organics	Food	Food	17.70%	21.40%	NR Other
Organics	Wood	Wood Furniture/Furniture Pieces	1.18%	1.42%	NR Other
Organics	Wood	Non-C&D Untreated Wood	0.19%	0.22%	NR Other
Organics	Textiles	Non-Clothing Textiles	1.36%	1.64%	NR Other
Organics	Textiles	Clothing Textiles	2.50%	3.03%	NR Other
Organics	Textiles	Carpet/Upholstery	1.23%		NR Other
Organics	Diapers/Hygiene	Disposable Diapers and Sanitary Producs	3.20%	3.89%	NR Other
Organics	Misc Organic	Animal By-Products	1.10%		NR Other
Organics	Misc Organic	Rubber Products	0.28%		NR Other
Organics	Textiles	Shoes	60.00%	0.72%	NR Other
Organics	Textiles	Other Leather Products	0.10%		NR Other
Organics	Misc Organic	Fines	3.61%		NR Other
Organics	Textiles	Upholstered or Other Organic-Type Furniture	0.90%		NR Other
Organics	Misc Organic	Misc Organics	0.72%		NR Other
Organics Total			38.89%	47.05%	
http://www.nyc.gov/html/nycwasteless/downloads		rts/wcsfinal/report/wcs 04 V1 1 studyoverview	w.pdf,		
accessed 8-5-11, Table 1-17, pp.45ff: high density	/high income				

		%RI		
	%REFUSE			RI
0/ of Words HD/III		Composta	DIT/D	1
% of Waste HD/HI 13.43%	HD/HI 5.53%	ble	RI T/D	lbs/day
2.97%				
1.65%				
17.95%	16.05%			
1.42%				
1.42/0	1.55%			
0.58%				
6.28%		8.58%	0.72	1,433
0.51%		0.69%	0.72	1,433
0.69%		0.07/0	0.00	113
46.69%	37.84%			
10.02 / 0	27.0170			
0.99%	1.37%	1.37%	0.11	229
0.46%		0.63%	0.05	105
0.01%				
11.20%	15.30%	15.30%	1.28	2,555
0.86%				Ź
0.11%	0.15%			
1.04%	1.40%			
1.31%	1.79%			
1.29%	1.78%			
2.37%	3.26%			
1.15%	1.59%			
0.18%				
0.35%	0.46%			
0.03%				
2.91%	3.94%			
0.46%				
0.64%	0.88%			
25.38%	34.62%	26.57%	2.22	4,437

							Paper/O				
		Units	Avg BRs	Tot. BRs	Est. Pop.	Cal. Pop.*	CC**	MGP***		rms	apts
Ref3-RI re	sidential bldgs		<u> </u>								5.10.10
_											
	Octagon	501	1.48	741	1000	934	46.6	30.0			
	o otagon	00.		,	1000		10.0	00.0	1100; no studios, 586-1		
									BR, 390 - 2 BR; 127 3-BR,		
		440=		4=00			4400		4 - 4BR	4=00	
	Manhattan Park	1107	1.59	1763		2,220	110.8	/1.4		1763	
									361 apartments:13 -		
	l.,	074	4.00			070	40.7	00.0	studios; 97 - 1 BR; 167 2 -	000	
	Westview	371	1.88	696		876	43.7	28.2	BR; 84 - 3 BR	696	
									1003 apartments total; 143		
									studios, 338 1-bedrooms;		
									264 2-bedrooms; 190 3-		
	Roosevelt Landings	1003	1.85	1851		2,330	116.3	74.9	bedrooms; 68 4-bedrooms	1851	
									400 apartments: 34		
									studios; 92 -1 BR; 154 -2		
	Island House	400	2.02	806		1,015	50.6	32.6	BR; 108 - 3 BR; 12 - 4 BR	806	
	Rivercross	377	2.59	976	1000	1,229	61.4	39.5			
						,			Bldg 1 has 240 units; Bldg		
									2 has 240 units; Bldg 3 has		
									216 units; Bldg 4 has 216		
									units, Bldg 5 has 123 units,		
	South Town#	1278	1.90	2428		3,057	152.6	98.3	Bldg 6 has 243 units		1278
	The Child School	NA				318					
		TOTAL		9262		11,661	582				
Island pop	o.(#BRs/tot.BRs);	61: from	table cited b	oelow.		TPD	1.59	1.03			
	pop./island pop.); 402 is fror										
	.pop./island pop.); 259 is fro	om Brauti	igam, loc. ci	<u>t.</u>							
	aytime pop only										
	ther bldgs since BR data no		e from interv	/iew.							
	P1 CT: Total Population										
	City Census Tracts, 200				Tracts						
http://www.	nyc.gov/html/dcp/html/censi	us/demo	tables 201	0.shtml							
units: http://www.rioc.com/housing.htm#companies, accessed 7-8-11								1			
*http://www.nyc.gov/html/nycwasteless/downloads/pdf/wastecharreports/wcsfinal/report/wcs 04 V1 1 studyoverview.pdf											
, gives by unit by cell annual avg generation rates by composition											
					wcsfinal/rep	ort/wcs_53	V4AppJ	Generatio	nRate		
Data.pdf, a	http://www.nyc.gov/html/nycwasteless/downloads/pdf/wastecharreports/wcsfinal/report/wcs_53_V4AppJ_GenerationRate Data.pdf, accessed 8-4-11, table j-13ff, pp. 55ff, gives household generation for refuse, paper, etc, by cell, by season										

Ref4				
	Tons Per D	91/		
	MSW	OCC/MxPaper	Metal/Glass	s/Plastic
UTRC Survey Estimate	2.46	0.57		5, 1 1 00 5 11
Industry Survey Estimate	3.97	0.53		
Employee-Based Estimate	1.22			
Envac Factors				
SELECTED FACTORS	3.97	0.57	0.14	
	Tons Per D	<u> </u> av		
Coler	MSW	OCC/MxPaper	Metal/Glass	s/Plastic
UTRC Survey Estimate	8.57	?	0.00	
Industry Survey Estimate	8.57	3.32	0.00	
NYC Factors				
Envac Factors				
	TPD			
RIOC	MSW	OCC/MXP	MGP	
RIOC	0.10			
Source: Sylvia Giralde to JS,			9, avg	
	TPD			
Litter Bins	0.20			
Source: Sylvia Giralde to JS,	7-28-10, data	for mar 2008 and 200	9, avg	_

				In-Hse Hrs/Wk	Hrs/Day					
Commercial	In-Hse/Hrs/	Day	Commercial(1)	9						
	8.6		Residential(2)	53						
			AVAC(3)		3					
			(1)UTRC busin	ess survey (Ref7)						
			(2)UTRC residential survey (Ref6)							
			(3)AVAC time e	(3)AVAC time estimated from ds-Roosevelt St Calc FY 10.xls, provided by Steve Brautigam 6-23-11: 4x45 yd						
			container picku	ontainer pickup per week, estimated 4 hours per trip, rounded up to nearest hour						

Note: Report Analysis based on RO RO shifts, see Appendix B-13, note 4.

Ref 5										
Dedicated Storage Space	(SF)									
	Interior	Exterior								
Commercial	400	200								
Residential (Rcys)(1)	0	891 🗲								
Hospital(2)	0	300		—Space	calculatio	n here do	es			
Litter Bins	NA	0		not inc	lude all ex	disting exte	erior			
Parks	0	0		areas	listed on p	16 and p7	of			
RIOC					dix A. Tot					
AVAC(3)	15070	23251			186+2,24°					
SUBTOTALS	15470	24642				•				
TOTAL	401	112		Appendix B-06, second page,						
				cell M	o. <i>)</i>					
(1)Interior space assumed	d required fo	r bulk waste	and for OC	C-managen	ent equipme	ent; exterior	r space does	not include	truck parkir	ng on the
assumption that a truck is	s needed for	other purpos	ses.							
(2)Interior space not know	wn and unce	rtain what s	pace needs,	if any, AVA	C would elin	ninate; exter	rior space=2	parking spo	ts used for o	containers
(3) from A.Mateu, "DRA	FT COUNT	ER PROPO	SAL FOR T	HE AVAC F	ACILITY R	COOSEVEL	Γ ISLAND-	RIOC", 6-2	010, and fro	m
proposed terminal at http										
current truck	24219									
current bldg	17760									
current tot	41979									
saving	19859									
future tot	22120									
new building	2690									
new truck	968									
new total	3658									
saving	38321									

	Bins	Non-Motorized Transport Equipment	Motorized Vehicles	Subtotals			
Commercial	0	0	0	0			
Residential(1)	10,500	21,750	210,000	242,250			
Hospital(2)	0	0	0	0			
Litter/Park Bins(3)	66800						
RIOC(4)	4000						
SUBTOTALS	77300	21750	210000				
TOTAL	309050						
(1)Assume no reduc	ction in curr	ent need for hins or hags and that private ca	rter supplies all other set.	out storage	and collect	tion equipme	ent

⁽²⁾Bldg Survey-b-down-8-8-.xlsx

⁽³⁾Bin number from UTRC survey. \$400 each estimate based on @: http://www.industrybasics.com/outdoor-waste-receptacles.aspx, 10-7-11 (4)http://www.govdeals.com/index.cfm?fa=Main.Item&itemid=47&acctid=1009#.TpiXyN4Uqso, accessed 10-14-11--estimate of \$4k for 45cy

Appendix A-2: Field Survey Components

APPENDIX A-2: FIELD SURVEY COMPONENTS

SURVEY OF BUSINESSES

A survey of RI businesses provided information on current waste handling practices and on the perspectives of business managers and owners.

Research team members compared various public and proprietary lists of registered businesses with actual businesses on the street. These businesses are primarily along RI's Main Street and include restaurants, grocery stores, delis, gift shops, and other small retail establishments as well as banks, and medical and other professional offices. Restaurants generate the greatest volumes of waste (including cooking oil, which is a waste stream that could not be collected by a pneumatic system), while professional offices and gift shops sometimes generated so few discards that they did not have their own carting service but instead had an arrangement with RIOC or with the management of an adjacent residential building to use their dumpsters.

Team members visited the businesses, introduced themselves as researchers studying "options for upgrading the efficiency and environmental benefits of Roosevelt Island's AVAC trash collection system" and asked to speak to the manager or owner. The businesses were not contacted ahead of time, but follow-up appointments were sometimes made at a time when a manager would be available. During the visit managers and owners were given a letter that explained the study in more detail and included contact information for the study's project managers. The explanation included the study's goals and funding sources and specified that the information gathered was for research purposes only. (See Appendix C.)

The survey instrument for businesses asked questions regarding their current waste-handling practices, including how much trash and recycling they produced, which recyclable fractions they handled and how they separated them, how many person-hours went into waste-handling, which carters they used, and sought their opinions and concerns about the current system. In some cases, the information was gathered during a tour of the business to observe waste storage areas, volumes awaiting pick-up, and waste-handling practices and conditions in general. On other occasions when the team visited Main Street, it was also possible to observe how trash and recycling was set out for carting truck pick-up and to take note of the condition of business dumpsters.

Waste-volume and waste-fraction estimates developed through the business survey were compared to waste-volume and fraction-data generated using the latest, most-relevant national generation factors based on numbers of employees by business type as well as to data from a confidential industry source. Professional judgment was then used to select the "best" estimates. Waste-fraction calculations also were based on waste-composition data developed by the New York City Department of Sanitation (as documented in Appendix A).

In some cases, even after several visits, team members were unable to meet with an owner, manager, or other individual who could provide the information we sought. Business owners sometimes seemed uncomfortable discussing their business practices with outsiders. Some may have feared that they were being inspected by regulators and might face some kind of penalty in regard to their waste-handling practices. In other cases, there appeared to be language barriers, actual or invented. But most owners or managers the team encountered were quite approachable and generously contributed observations about waste-handling issues. These observations included complaints about other businesses not complying with the rules and concerns about handling waste in an affordable and efficient manner. Some owners or managers expressed the hope that business waste could be integrated into the AVAC system.

LITTER BIN MAPPING AND PHOTO DOCUMENTATION

Research team members conducted a field survey to map the location of all public litter bins and recycling receptacles. These features were combined with plans of existing buildings and other geographic layers (e.g., curbs, sidewalks, parks) to create detailed maps. (These map files are in Appendix C.)

Bins were photographed to document the receptacle types currently in use and their locational context relative to building entrances, bus stops and other public amenities. The photographs also reveal problems of trash-overflow in certain locations.

TOURS OF RESIDENTIAL BUILDINGS

Team members visited residential buildings to observe waste-handling procedures and waste-collection and -storage areas, and to gain an understanding of building layouts. The visits involved an initial informational interview with the manager, followed by a tour of the building with the manager(s) and/or a superintendent or porter. Visits typically lasted one to three hours depending on the size of the complex and the number of buildings visited.

Visits were arranged by contacting each complex owner or manager by e-mail (see Appendix C for letter). Subsequently, each building owner or manager was contacted by e-mail or phone to arrange a meeting date and answer any questions regarding the study. In general, managers were interested in and supportive of the study, seemed familiar with and interested in NYSERDA, and were extremely cooperative both during the visits and in subsequent e-mail and phone interactions.

MEETING WITH RESIDENTIAL BUILDING MANAGERS

During the arranged meetings with team members, managers were asked to provide information regarding the size of the complex or building for which they were responsible, including the number of apartments of each size (studio to four-bedroom), the number of floors, and the numbers and layouts of buildings in the complex. They also indicated how many people were on staff and gave an estimate of how many work hours were dedicated to the collection, transport and staging of recyclables. They were asked to estimate the usual amount of recyclables collected, to describe the typical collection and transport practices, and to indicate how landscaping-waste was handled. Managers were also asked to assess the efficiency of the current system for handling recyclables and to describe any concerns they might have about any aspect of their buildings' waste-management operations.

Team members explained that one proposed upgrade to the system involved installing outdoor inlets for recyclables. Given their knowledge of the way foot traffic flowed through the buildings they managed, managers were asked to indicate on a map possible locations for these inlets.

Most managers declined to supply the names of residents from whom we might also solicit views on waste-management conditions and options. Instead, they suggested that we speak with people informally as we encountered them during the tour.

TOUR WITH SUPERINTENDENT OR PORTER

The tour included observation of what RI residents call "the AVAC Room," that is, the enclosed room on each residential floor with the trash chute and bins for recyclables. During these tours, the team sometimes encountered residents and other building staff and were able to informally observe their waste-management operations.

While touring with superintendents, the team observed recycling collection, the AVAC diverter valves in operation, and the areas of each residential building that are dedicated to the handling of waste. (For the most part, the areas on each floor store only recyclables, and the occasional piece of bulky waste, since residents insert refuse directly into the AVAC chute). The staging areas to which building porters take

recyclables and bulk waste, typically in building basements as well as in adjacent exterior spaces, were also measured and mapped. The team observed the carts and other equipment used to collect and store recyclables and gathered information about the building-owned truck or vehicle used to transport them to the AVAC facility. During the tours, superintendents and porters were asked for their views about the current system's operation and for an explanation of any challenges or problems, whether related to the way the process was managed and carried out or to resident participation and cooperation.

In a few cases, we contacted managers and superintendents again to verify certain information or to request additional data. We visited several managers a second time to solicit their views about resident preferences, as discussed in the next section.

SURVEY AND ASSESSMENT OF RESIDENTS' OPERATIONAL PREFERENCES

Team members approached RIOC for advice and permission to ask residents for their views on possible upgrades to the AVAC system. It was suggested that the team contact the RI Residents Association (RIRA), an elected body of resident representatives.

The research team contacted the president of RIRA and arranged to give a presentation at a regularly scheduled meeting. The president indicated that there would be little time (7-10 minutes) for the presentation at the beginning of their meeting. The presentation made to RIRA on December 7, 2011 described the study and asked for the input of these active community members. During the presentation, the representatives were given a handout with a graphic that illustrated how the AVAC system could be adapted for recyclables. The handout also included three focused questions regarding their preferences for an upgraded system. (See Appendix) It was explained that it was impracticable to retrofit the existing buildings to include recyclables, but that these could be collected by the addition of outdoor inlets. Residents were then asked about their preferences regarding the way the inlets should be operated:

- 1. Did they prefer that recyclables be carried out and deposited by residents or porters?
- 2. Did they prefer that the outdoor inlets be located in the front or the back of their building?
- 3. Were they and their fellow residents interested in composting (which would require separate collection of organic waste)?

Responses from the short discussion at the RIRA meeting are included in the Findings section. The handout also provided contact information for the project team and invited these representatives to discuss these topics with their fellow residents and to report what they learned. During the meeting, a sheet was passed around so that those who were willing to be contacted could give their email and/or phone numbers. Several representatives subsequently contacted team members with questions or comments. Those who gave their emails or phone numbers were also sent a follow-up message requesting that they respond to a survey that was subsequently posted on a link found at the RIOC web site. They were also encouraged to ask the residents they represent to answer the online survey. This survey, developed in further consultation with RIOC, provided information similar to that available on the handout and asked the three questions posted above. RIOC promoted the survey, developed using Survey Monkey (see Appendix A-5), by keeping a link prominently posted on the home page of their web site.

The responses of RIRA representatives and others to the survey—at the presentation, by email, in phone conversations with several residents who preferred phone over email, and in informal interactions while touring the buildings—all contributed to the assessment of user preferences discussed in the Findings. While team members would have preferred to survey a wider sample of island residents, there were two reasons why this was not done. First, both building managers and RIOC were protective of the time and privacy of island residents: team members respected this constraint. Second, the initial responses were highly consistent; it therefore did not seem cost effective, or necessary, to conduct any further surveys in order to provide decision-makers with the information they needed. These results are discussed in the Findings section.

OBSERVATION OF RIOC WASTE HANDLING ON STREETS AND IN PARKS

RIOC collects trash and recycling from Main Street and from bins in other public areas and parks. In order to get a sense of how this is done, including how much time and effort this requires and the volume of waste collected, a team member traveled with the grounds supervisor during a collection run. The supervisor explained typical collection practices as they followed the collection truck on its rounds. This provided information about the typical truck route, collection routines and their challenges, relative waste volumes on streets and in parks, and safety practices such as collecting only on one side of the street at a time in order to avoid crossing the street and blocking traffic.

ENGINEERING SURVEY OF EXISTING AVAC CONDITION

For purposes of this assessment, it was assumed that the AVAC terminal, with all of its existing equipment (e.g., generators, fans, cyclone-separators, fabric filters, and digital control and monitoring equipment) will need to be replaced for an upgraded system. The question to be answered was to what extent can the existing inlets and trunk-line network continue to function satisfactorily as part of an upgraded system. Accordingly, an engineer from Envac's Barcelona offices conducted an on-site assessment of the condition of the existing AVAC tube network and diverter valves.

CAMILLE KAMGA ACTING DIRECTOR

ROBERT E. PAASWELL DIRECTOR EMERITUS

REGION II

New York New York Puerto Rico

CONSORTIUM MEMBERS

City University of New York Clarkson University Columbia University Comell University Hofstra University New Jersey Institute of Technology New York University Polytechnic Institute of NYU Rowan University Rensselaer Polytechnic Institute Rutgers University State University of New York Stevens Institute of Technology Syracuse University The College of New Jersey University of Puerto Rico

REGION II UNIVERSITY TRANSPORTATION RESEARCH CENTER

June, 2011

Dear Business Owner/Manager,

We are conducting a study to evaluate options for upgrading the efficiency and environmental benefits of Roosevelt Island's AVAC trash collection system. The study is sponsored by City University of New York's Transportation Research Center (UTRC) and co-funded by the New York State Energy Research and Development Authority (NYSERDA).

One of the alternatives we are analyzing is the possibility of using the AVAC system to collect trash and recyclables discarded by the Island's businesses. To determine whether this might be feasible, we need to know how much trash businesses produce and how they currently dispose of it.

We would like to speak with the owner, manager or other individual who is most familiar with your business's trash disposal process. Our questions will take about five minutes to answer, and we will make every effort to avoid interfering with the course of business during our brief visit.

Please be assured that all responses are confidential and will be used only for the research purposes of the above-mentioned organizations (UTRC and NYSERDA).

Please keep this letter for your records, and feel free to contact us with any questions.

We thank you for your time and attention.

Sincerely,

(signature)

Juliette Spertus, Project Co-Manager 617.308.9194 juliette.spertus@gmail.com

MARSHAK HALL ROOM 910
THECITY COLLEGE NEW YORK NEW YORK 10031 212-650-8050 FAX 212-650-8374
WWW.UTRC2 ORG

AVAC Upgrade Feasibility S	tudy					NO		
1. Business Name:								
2. Address:			3. Type	of Busine	ess:			
4. Days & Hours of Operation:			'					
5: Position of Interviewee:	Owner	Manager	Asst. Manager	r Er	mployee (sp	ecify title: _		
6: Which company collects yo	our trash?				0	r Collected b	by Cleaning	Servio
					or N	lo Collection	<u> </u>	
If separate collectors, indica	ite which item	ns & by whom?						
ITEMS COLLECTED)		COI	MPANY				
7.			9.					
8.			10:					
11: Do you separate any recyc	clable materi	als from your re	egular trash and	set them	n out separa	tely for coll	ection? Yf	ES
If yes: what materials do you						,		
MetalPlasticGlass	Cardboar		Metal	Food V	Naste	Cooking Oil		
Other (sp		а, рарсі	ricui	1000	vasc	COOKING OII		
12: How many times a wee		carter collect tr	ach?		X/wee	k		
Trash and recycling collected to			d511:			K		
If separate, how many times a			t rocyclables	,			Y/wook	or
N/A	week does yo	our carter conec	c recyclables:				_\/ WEEK_	OI .
13: How many separate true	ks does the	company use to	collect any tyn	es of was	te?		N	I/A
If separate trucks, how many				cs or was	ic.			,,,,
14: Where <u>inside your estab</u>				s (includir	ng any recyc	lable mater	ials) prior t	'n
collection?	nomicite do	you score you.	Waste Material	o (meraan	ig any recyc	addie mater	idio, prior c	
Collections								
Basement Closet	Adjacent SI	hared Space	Do not store	inside	Other			
busement closet	/ ajacene or	пагса орасс	Do not store	iliolac	outer			
15: How many square feet doe	s your waste	storage take?			Esti	imate	Known	N/
, .	•	3						
16. Business Square Footage:		Specific	Estimate					
17: Where outside your esta	<u>blishment</u> d	lo you put your	trash & recyclir	ng for coll	ection on pi	ck-up days?	•	
			Elsev	where			N/A	
If shared Dumpster, with (bus.								
18: On average how much tr	<u>ash</u> do you s	et out each pick	c-up? (maxim	um range	!)			
# Bags # Boxes		# Bin(s)	(Size)	# Dumps	ter(s)	(Size	
19: What are the primary ma	aterials you	recycle?						
20: On average how much re	cycling of e	ach of these do	you set out ea	ch pick-u	p? (maxii	mum range	OCC (
)			•					
# Bags # Boxes	# Bin(s)_	(Size) # Dumpste	er(s)	(Size)	# Liq. Bar	rels	(Size
)								
21: Does the amount of trasl	n or recyclable	es vary significa	antly depending	g on the d	lay of the w	eek or time	of year?	Yes 1
If yes, Why?								
					_			
22: How much time does it to				o handle t	the waste m	aterials you	ır business	produo
# People	#	Hour	S					
22 # of Emple T		r pr						
23: : # of Employees: Tota	il FT	「 PT						

24. Does t		ır business pı	oduces create	any problems in terms of [re	ecord any relevant detai	ls that the responder
can provid	odors	insects	rodents	other animal scavengers	litter on the street	other
COMMENT	S:					
25. Haule	r/carter nam	e on business	sticker:		No sticker o	bserved
UTRC Info	rmation					
OTRC INIO	iiiiauoii					
Interviewe				PHOTOS Y #		N

Bldg Name: _____ Start/End Time:_____ Manager Name_____ Manager Title:_____ Address:____ Manager Phone:_____ Manager E-mail:_____ Others Interviewed: Name, Title Phone Building Maintenance Rep/Porter Name: Name, Title Phone Name, Title Phone General Questions Number of Apartments Number of Types of Apts (Studio, 1BR, 2BR etc) Number of Floors/Wings Number of Tenants Labor Requirements: Employees involved in managing facility's recycling: FT PΤ (including transport to AVAC Yard) Culmulative number of hours/week devoted to recycling Hours/Week (including transport to AVAC yard, cleaning, vehicle maintenance)

RI Building Site Visit - Data Sheet

<u>Notes</u>				
Fauinment Bequire	omontei			
Equipment Require				
Number of Vehicles in	Fleet			
Types:				
Motorized	_	Gasoline, Diesel, or oth	her Heavy	 Duty Truck (under 14k lbs)
Small Pickup or V	 'an	Large Pickup or SUV	/ Mediur	n Duty Truck Under 26K lbs
Large Van	_	Small Utility		Heavy Duty Truck
Transport Impacts	<u> </u>			
Number of Trips Per W	eek to AVAC Y	ard		-
What Type of Vehicle_			_	
Typical Round-Trip Tim	ne		_	
Bins				
Overal	ll Number		Number	r per floor
Quantities of Recy (if records exist or any ba		an estimate)		
_	Metal/Glass/Pl	lastic	Cardboard/Paper	<u> </u>
<u>Vegetation</u>				
Who manages landscap	ping?		_	

If a contractor, where does the waste go?	
If Building Manages Landscaping:	
Amount of Yard Waste/Time	Disposal Location
Labor Time Involved in Disposal	How many Truck Trips
Type of Truck (see above for examples)	Amount of Space for Staging
Are there plans to renovate the grounds?	
If so, where (locate on map)?	
Level of Satisfaction with Current Recy Any problems and/or incidents? (e.g. tenant complian	
(1)	
<u>Locations for additional inlets to handle</u> (cannot retrofit buildings, need to install outside build	
Where outside building would the best local (should use footprint or ground floor plan map if poss.	
(should use rootprint or ground noor plan map it poss.	ble. Use space below as a key y
A. Places to avoid adding inlets	B. Entrances and outdoor access points
A. Places to avoid adding inlets	Locate on plan: service entries (S), entries to individual units (I), main lobby entry (L), additional lobby entries (AL), etc)
C. Certain entries not in use or for certain	D. Areas your company is resposible for and areas

E. Where do p	people congregate?	
Tenant Representa	ative/Group/Commi	ttee
	Name	Phone Number/Email
Site Tour		
recyclable materials and/ by that accumulation and	or equipment, such as bins, the source of that accumul of material {i.e. co-mingle	types of spaces, photograph them (including any , carts, or vehicles, astertain the time period represented lation {e.g. one hallway, seven floors,} and estimate d MGP, OCC/paper}, measure them (at least
AVAC ROOMS		
Size of AVAC Rooms		
Observations of AVAC Roo	oms	
RECYCLING ROOMS	non floor	
Number of Recycling Roor	ms per noor	
Measurements of Recyclir	ng Room	
Other Observations		

Other interior space where recyclables are collected	!?	
	ı	
Measurements	Number of Carts	
Other Exterior space where waste is stored or for tr	ransport to AVAC yard?	
Measurements	Number of Carts	
7		
<u>Interview with Building Maintenance</u> Corrobate information collected above	Representative/Porter	
Corrobate information collected above		
Tell me how the process of collecting recycling work	s (step by step):	
Degree of Satisfaction with Current System		
bogree or satisfaction with current by stom		
Tenant behavior related to recycling		

From a system-design-and-operations perspective, there are three major issues associated with how an upgraded system for discarded residential materials might be managed.

The first, and most significant, is whether residents would directly insert their recyclable materials into the proposed new exterior inlets—which would require residents (some of whom are elderly and/or disabled)¹ to carry their discarded materials via elevator or stairway to the outside and insert their discards (which might include potentially embarrassing or distasteful materials such as liquor bottles or food wastes) into inlets in public view—or whether building maintenance staff would perform this function (as they currently remove these materials from utility rooms on each floor). Although there are strong grounds for recommending that residents manage these materials directly, as is done in most parts of the world where there are outdoor recycling receptacles of various kinds, our initial contacts with management personnel, building staff, and building residents suggested that Islanders had a strong preference for allowing building residents to continue to deposit their recyclables in the hallway closets for building staff to remove. (Advantages of having residents manage discarded materials directly include significant labor savings as well as increased diversion of materials from the refuse stream due to increased awareness of recycling.) Since the effectiveness of a recycling program depends in part on the population's willingness to participate in it—and because outdoor recycling systems are not something to which US citizens are generally accustomed—the study team thought it important to assess the views of both building managers/support staff and residents on this issue.

An associated question, the answer to which might partly depend on the answer to the first question, is whether the new exterior inlets should be placed near the front or rear doors to the residential buildings. Placing the inlets as near as practicable to the building entrance is considered important for minimizing the inconvenience associated with inclement weather. If they were in front, they would be conveniently placed for residents carrying discarded materials on their way out of their buildings on their way to work, errands, or other purposes. If they were in the rear, residents might have to make a special trip to access them, but the composition and quantities of their recyclables would not be as publicly visible. If porters were to handle these materials, our expectation is that most parties would prefer back-door inlets. On the other hand, if residents were to handle these materials, we would expect that most residents would prefer front-door locations, for reasons of convenience.

The final question is whether there should be two additional inlets (one for each of the two streams legally required to be separated: paper; metal/glass/plastic) or whether there should also be a third new inlet (for kitchen wastes and other compostable organics). (If porters are responsible for inserting recyclables—so that the two dry recyclable streams, metal/glass/plastic and paper, can be inserted at different specified times—only one additional inlet could be installed for these two fractions. This would produce a modest savings in initial capital costs, but this savings would be outweighed in the long-run by increased operating costs. However, if an extra tee-joints are installed when the system is first built, at a relatively small incremental cost, additional inlets for additional fractions can be added at some future point without incurring a significant cost penalty.)

If porters rather than residents are responsible for inserting materials into the new inlets, designating source-separated food waste as a fourth fraction could be problematic from an operational perspective, since it would involve frequent manual collection, transport, and bin-cleaning, and could present the possibility for nuisances.

We solicited the building managers' views on these questions with phone calls or meetings with the manager of each complex. We solicited residents' views via an invited presentation to the Roosevelt Island Residents' Association at which informational materials were handed out, follow-up calls e-mails were sent to representatives who agreed to give their contact information, and a Web survey via the RIOC Web site: http://rioc.ny.gov/AVAC/. (The Web pages from this survey are attached as Appendix 1.) All of these consultations were conducted in close coordination with RIOC. In consultation with RIOC, the project team

¹ European citizens are typically required to carry their own discarded materials to street-level receptacles. In Wembley City, England, where an auto-pneumatic tube system has been in operation for several years, caretaking staff handle waste only for elderly or disabled residents who are designated as needing "assisted collection." (Julian Gaylor, Managing Director, Envac UK Ltd. to Jonas Tornblom, Director, Corporate Marketing & Information, Envac AB, 1-26-12.)

determined that neither focus groups nor interviews with DSNY personnel were warranted to achieve the objectives for this task.

The findings reported below will be used as a preliminary basis for assessing physical, operational, and engineering conditions during our on-site engineering analysis. The outcome of this on-site assessment will guide the final engineering design proposal for inlet locations and waste fractions.

It should be noted in this regard that there are no engineering, construction, and operational constraints that require decisions on how the inlets are operated (i.e., by residents or porters) to be made on an Island-wide basis. That is, one building complex may choose to operate one way and another the other. Likewise, there is no engineering or operational reason why operating patterns could not change over time, so that a building complex might begin with porter-operation and then shift at some future point to resident-operation. Finally, a decision to install a fourth inlet for source-separated food waste and organics could also be made at a later time, since there would not be a significant cost-penalty associated with such a later retrofit, assuming that relatively low-cost modifications are installed at the outset.

ROOSEVELT ISLAND RESIDENTS AND THE AVAC SYSTEM

The following is a summary of resident and building manager views regarding both the current waste handling system on Roosevelt Island and a possible AVAC upgrade. The following quotations are from interviews, building tours, field observations and an online survey of operational preferences.

The findings show:

1. A Strong Preference for a Porter-Managed Recycling System

Most people we spoke with, or who responded via the Web site, expressed a preference for porter use of any additional inlet for recycling. Their reasons included their perception of a lack of resident interest and/or reliability to use the system properly and of a resident unwillingness to carry recyclables outside after becoming accustomed to the current more convenient practice of depositing them in nearby AVAC rooms for porter removal.

- 2. An Extremely Positive View of the AVAC System
- Roosevelt Islanders are proud of their AVAC system and it works so well that they seem to forget that pneumatic tubes are at work under their streets. People we spoke with liked the idea of expanding a system they perceive as highly successful.
- 3. A Concern about the Cost v. Savings of an Upgrade to the AVAC System While enthusiastic about the potential benefits of the system upgrade, people we spoke with wanted more information about its potential cost, future savings and wanted to know how the upgrade would be funded.
- 4. The Perception of a Low Level of Environmental Activism
 Although residents express enthusiasm for the AVAC system, the people we contacted did *not* consider Roosevelt Island to be a community with a strong environmental consciousness. Most considered the interest in composting, for example, to be low, but they also felt that this could change.
- 5. A Desire for More Training and Education for Residents and Staff about the Proper Use of Both the Current and Future AVAC System

Building managers and residents emphasized the important of education and training to encourage the community and its employees to use the AVAC system appropriately.

Resident Views on Current State of Waste Handling

All residential buildings offer tenants an "AVAC room" with a trash chute and recycling bins. These rooms are on every floor just steps from most apartments (an exception is Roosevelt Landings/Eastwood where some residents have to travel to a different wing or floor to their nearest AVAC room).

Though the AVAC system works well for trash, some residents and managers express frustration with the current state of recycling.

"So far, I have never been convinced that our building separates recyclables correctly." -survey response

"...many residents seem to not be able to distinguish between the green and blue bins." -survey response

During a tour, one building manager pointed out examples of AVAC rooms with trash placed in the recycling bins. We observed that residents did not always place paper, cans and bottles in the appropriate bins, creating extra work for porters. And basements were often crowded with boxes that needed to be broken down and recycled.

Several residents pointed to the problem of recyclables left on the sidewalk outside of some residential buildings when they are set out for carter pick-ups. They considered it unsightly. It is notable that there are relatively few recycling bins in public areas on the island. Adding more would help reinforce the practice generally.

"Why don't we have recycling sorting bins at present? It would easily encourage people to recycle more..."—survey respondent [presumable referring to public areas]

Reactions to Possible Exterior Inlets for Recyclables

Residents showed enthusiasm about the proposed addition of inlets for recyclables. "I sure hope it goes," said one resident by phone interview, because "we all pay for those trucks." An additional benefit to residential buildings would be that they "wouldn't have to store" recyclables.

The following email expressed a common concern about the cost and potential savings of the upgrade:

"How do residents gain to benefit from this upgrade? Are there long term advantages that can be quantified ie... savings in operating expenses, faster recycling leading to building become more energy efficient etc"—resident via email

Survey respondents expressed the hope that **commercial waste** from island businesses could also be removed through use of the AVAC system:

"The AVAC should also allow commercial buildings to use it as this will remove the need to have trash and dumpsters on the street." –Web response

"New system should make all streets trash free." - Web response

"Excellent way of handling the recyclables. Especially as it gets the piles of trash off the streets. Now if we could only get rid of all the illegally parked cars..." — Web response

Resident or Porter Use of Recycling Inlet?

Almost everyone with whom we spoke or who responded via the Web expressed a preference for porter use of any additional inlet for recycling. The main reason given was a perceived lack of interest by other residents and/or a lack of confidence that other residents would use the additional inlets properly.

• "I wouldn't mind taking my own recyclables but I don't trust other people to do the same."— Web response

- 'Ten percent [of residents] are environmentally conscious and would do it [take out their own recycling' -residential building manager
- "No way" [could you] "leave recycling to residents." -resident (phone conversation)
- "I don't think most people would access" [the outside inlets,] "especially not in winter...." [It would be a] "big burden" 'especially when they are now used to depositing [recycling] inside.'— resident (phone conversation)
- "I doubt more than a handful of people would be willing to schlep their own recyclables outside, or beyond the current collection rooms on each floor. But the porter system now could greatly benefit from an AVAC recyclables inlet." —resident, via email

One commenter fears that a resident-based recyclable disposal system might discourage recycling overall.

"If people have to carry the bags outside themselves, I think many people will just throw their recyclables in with the regular trash. I wouldn't because I think recycling is very important, but I bet a lot of people would."—survey response

Another resident preferred a system in which all waste went into the same tube (the current trash inlet?):

- "All trash and recyclables carried by AVAC, sorted at destination facility"— Web response A respondent thought RI residents would not take care to use inlets properly:
- "My opinion is that residents of RI are not the innately disciplined people of Stockholm or the pride-ofplace people of Catalonia. The result will be that there will be a mixing of garbage types in publiclyavailable chutes. This is unfortunate, but it's my sense of who we are. I don't want to give people the opportunity to put a half-eaten ice cream cone in a glass bottle chute." – Web response

The same resident goes on to suggest the importance of training porters to do the separation:

"I think the best option would be to have the building porters ensure the proper separation -- assuming that they too have a training program"— Web response

Another resident also thought porters should be trained in proper separation:

"Some training might be necessary to ensure that building porters are scrupulous about recycling and that building managements supervise the process." – Web response

Composting

There was no question on the survey on composting, but this was discussed informally with some residents and in meetings with building managers.

When asked if there was interest in composting, one knowledgeable and active community member commented that RI is "not that green."

The greenest building is the Octagon, a LEED-certified building that may attract more environmentally conscious residents. A small group of Octagon residents has set up two composting bins and an organic garden.

One active member of that group wrote:

"As for compostables, I would imagine participation being about the same as our current composting program which I roughly estimate at about 10-20 households [in a building of 500 apartments]. It would

be very similar to taking compostables out to our compost bin and not so many people do that. I don't think a compost collection bin on each floor would work as it would be too messy/smelly. I think this would be a much harder sell than the recyclables. I do think there is interest by a small percentage of people but I'm not sure if it's a critical mass yet. I mean our participation in the Octagon has the added incentive of going into our own garden and our numbers are still pretty small."—resident, by email

One survey respondent was in favor of composting opportunities in the community:

"In addition we should also find a way to have composting stations around the island, which would turn into mulch to be used by all landscape maintenance companies, including RIOC's team."

Roosevelt Island has a large, active community garden with a long waiting list for use of a space. Over the long run, there is potential for interest to develop in composting of yard, landscaping (RIOC), and household organic/kitchen waste.

Sources

- field observations/visits to residential buildings
- interviews and tours with residential building managers and staff
- interviews by phone and email exchange with Roosevelt Island Residents' Association representatives
- interviews in person and by email with other active RI residents
- an online response form

How Web form was publicized

The online response form, created using SurveyMonkey, was posted with background information and a direct link on the RIOC website and on their Facebook page.

The main question on the on-line form was presented to a meeting of the Roosevelt Island Residents Association (RIRA) and a link to the form was forwarded to 9 members of RIRA who agreed to give their emails or phone numbers. Representatives were asked to spread word of the Web form to their constituents.

Dear RIRA Representative,

As part of the AVAC feasibility study discussed at the December 2011 RIRA meeting, we are seeking resident input on possible upgrades to Roosevelt Island's waste removal system. Please encourage the building residents you represent to express their preferences regarding the future of recycling on Roosevelt Island by visiting the RIOC web site:

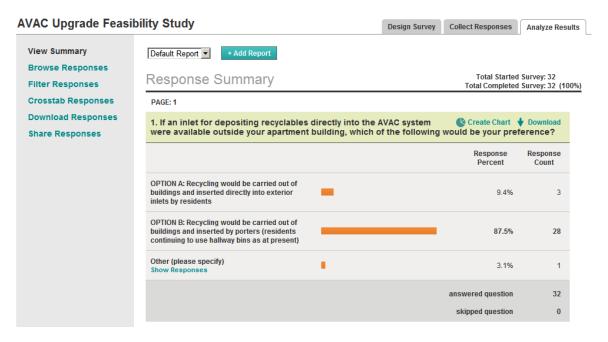
http://www.rioc.com

Through the slide show on the home page they can click on a link to the "AVAC Feasibility Study." There they can read about the background of Roosevelt Island's AVAC system, learn about some possible upgrades to the system and contribute to the study by taking a short survey. RIOC will also make available a paper survey to those who do not have access to the Internet. Please contact me for further information.

Thank you for your participation and Happy New Year!

Lisa Douglass Research Assistant UTRC/NYSERDA AVAC Feasibility Study

The president of RIRA mentioned the Web form his Main Street Wire newspaper column and he forwarded the email to other island press.


An email with a link to the Web form was also sent to residential building managers.

Some Relevant Community Characteristics

<u>Long-term resident and newcomer mix</u> – Nine of twelve residential buildings on Roosevelt Island are rentals. Although there are many long-term residents, there is also at any given time a large segment of the RI population that is new to the island, since apartments turn over relatively frequently.

Accessibility and Ease-of-Use Issues -- RI prides itself in being highly accessible and is welcoming to people with disabilities. It also has a higher average age than elsewhere in New York City.² These characteristics are important in considering the ways residents might be asked to participate in a new recycling system.

<u>Large International Community</u> –Roosevelt Island is a popular place to live for employees of the nearby United Nations and related agencies, and therefore home to a large international community. One building manager noted that because the island has people from many different traditions, there are different attitudes and levels of awareness and interest regarding issues like recycling.

² Median age, NYC: 34.2. Median age, RI: 41. www.city-data.com, accessed 1-27-12.

APPENDIX A-5: Recommendations In PlaNYC With Specific Relevance To Pneumatic Collection

Recycling, in multifamily residential buildings, is often difficult due to a lack of space to store and sort recyclables.

We will work with the City Council to require new multi-family residential buildings to provide sufficient space for recycling receptacles.

INITIATIVE 6: Create opportunities to recover organic material

30% of what we throw away in our homes is organic material.

On the commercial side, organics represent 18% of the total waste stream. Paying to transport these organics to distant landfills is not only expensive due to the high water content of these materials, but it is also a key driver of our GHG emissions...

With separation and treatment, food waste can be converted into a valuable resource for agricultural applications and energy generation. Diverting organics from the general waste stream could save the City and its businesses millions of dollars[and] reduce transportation impacts such as congestion, noise, and air emissions.

32

CASE STUDY:

Policies to Incentivize Waste Reduction

New Yorkers pay for waste collection through local taxes regardless of how much—or how little—they generate. A growing number of cities have taken a different approach and implemented a fee-based system known as "Pay As You Throw" or "Save As You Throw" (SAYT) that varies based on how much waste a household generates.

SAYT treats waste collection just like electricity, gas, phone, and other utilities; households pay a variable rate depending on the amount of service they use.

Implementing this approach in New York City, which has a high percentage of high density, multi-family housing, would present special challenges....

INITIATIVE 8: Pilot conversion technologies

We rely largely on landfills for disposal. To identify alternative disposal methods that further reduce methane emissions and transportation impacts, we have studied new and emerging technologies that convert solid waste into either electricity or fuel that can then be sold as a revenue-generating product. ...

Two specific technologies, anaerobic digestion and thermal processing [technologies that produce a synthesis gas], are the most widely used and have the greatest potential for commercial applicability in New York City.

These technologies could result in significantly less waste being disposed in landfills, reducing GHG emissions.

Our plan for solid waste:

Reduce waste by not generating it

- 1 Promote waste prevention opportunities
 - 2 Increase the reuse of materials

Increase the recovery of resources from the waste stream

- 3 Incentivize recycling
- 4 Improve the convenience and ease of recycling
- 5 Revise city codes and regulations to reduce construction and demolition waste
- 6 Create additional opportunities to recover organic material
 - 7 Identify additional markets for recycled materials
- 8 Pilot conversion technologies

Improve the efficiency of our waste management system

- 9 Reduce the impact of the waste system on communities
- 10 Improve commercial solid waste management data
 - 11 Remove toxic materials from the general waste stream

Reduce the City government's solid waste footprint

- 12 Revise the City government procurement practices
- 13 Improve diversion rate for waste from City government

Appendix B: Cost and Environmental Calculations

	A	В	С	D	E	F
1	APPENDIX B: Cost and Environmental Calculations					
2						
3	Table B-01. Imputed Costs of Conventional Collection for Ro	osevelt Islan	d			
4			<u></u>			}
	NYC DSNY Costs, Fiscal 2005					
6		Refuse	Recyclables	Wtd. Avg.		
7	Total cost/t (including disposal, debt service)(a)	267				
	Tons collected(b)	2894455	629796			
	Tons/truck/shift	10.6				
	Total export costs for collected refuse/recyclables(b)©	314868000	12683000			
	Debt service on garages/vehicles(d)	44890165	16056326			
	Collection labor cost/t(e)	99	152			
13	Export/processing costs/t	109	20			
14	Debt service/t	15.51	25.49			
15	Debt service/t: 2011\$	17.86	29.36	21		
	RI wtd avg debt service 2013			25		
17	Collection only (-export/processing; debt service)	143	248			
18	RI wtd avg collection costs (2005)	0.688836105	0.311163895	176		
19	RI wtd avg collection costs w/o debt service 2011			203		
20	RI wtd avg collection costs w/o debt service 2013			210		
	Collection w/ debt service	158	274			
	RI wtd avg collection costs w/ debt service (2005)			194		
	RI wtd avg collection costs w/ debt service 2011 (g)	182	316	223		
	RI wtd avg collection costs w/ debt service 2013 (g)			230		
	Source:					
	http://docs.nrdc.org/cities/files/cit_08052801A.pdf, accessed 12-12-11					
27						
	(a)p23, Table 4c without recycling revenues (with DSM adjustments, wh					
	inappropriately assigned to the recycling budget and do not include para					
-	charging all Bureau of Waste Prevention, Reuse, and Recycling costs, wh		•			
	with processing costs for recyclables, to the cost of collecting recyclables	s, while not app	ortioning items tha	t are related to	collection, suc	n as revenues
	from enforcement fines).	7	T	;		<u>{</u>
	(b)p20, Table 2					}
	(c)p21, Table 3a (d)p23, Table 4b					
	(d)p23, Table 4b (e)p25, Table 8a					}
-		as identified in	Annondiy A 1 Dof	ronco 1 (E Otad	rofusou 2 624	nd rocyclables
	(f)Collection costs apportioned using Roosevelt Island relative tonnages			: ence 1 (5.8tpa	reruse; 2.021	pu recyclables)
٥٥	(g) Inflated by BLS CPI index, 2005 to 2011, http://www.bls.gov/data/ir	mation_calculat	טו.וונווו			}

Tons Waste (1) Scenario-Specific Tons/Day 5.80 7.33 7.33 10.56	Upgrade+R+ Comm'l+Litter 15.54 5.672 15.54 5,672 2293 837,017 9,305 0.28 10,417	Manual 10.66 3,891 15.54 5,672 23,756 9,141 32,897 NA 10,405
2011 AVAC No-Action Upgrade Upgrade+R Color	Comm'l+Litter 15.54 5,672 15.54 5,672 2293 837,017 9,305 0.28 10,417	10.66 3,891 15.54 5,672 - - - 23,756 9,141 32,897 NA
Tons Waste (1) Scenario-Specific Tons/Day 5.80 7.33 7.33 10.56	15.54 5,672 15.54 5,672 2293 837,017 9,305 0.28 10,417	10.66 3,891 15.54 5,672 - - - 23,756 9,141 32,897 NA
Scenario-Specific Tons/Y 2,117 2,675 2,675 3,854	5,672 15,54 5,672 2293 837,017 9,305 9,305 0.28 10,417	3,891 15.54 5,672 - - 23,756 9,141 32,897
6 North-Island Total Tons/Y 4,891 5,672 5,672 5,672 7 Electricity (2) KWH/Day 2674 3379 531 1504 8 KWH/Play 976,000 1,233,462 193,974 58,935 9 Truck Miles (3) DSNY RO RO Miles/Y 12,031 15,204 14,255 6,546 10 Commercial Truck Miles/Y 23,756 23,756 23,756 23,756 23,756 11 DSNY Rear-Loader Miles/Y 35,787 38,960 38,011 30,302 13 DSNY HOrommercial Collection Miles/Y 35,787 38,960 38,011 30,302 14 Incl. Transport+Disposal DSNY Mi/Y w/ Transp-Disp 13,031 16,468 15,368 7,658 (With SAYT Projected Delta v. Manual 2626 6063 4963 -2747 15 DSNY Mi/Y m/ Transp-Disp 4,3 4,2 3.95 2.0 17 Delta v. Manual 60% 58% 48% -26% 18	5,672 2293 837,017 9,305 9,305 0.28 10,417	5,672 - 23,756 9,141 32,897 NA
Truck Miles (3) September 1 September 2 September	2293 837,017 9,305 9,305 0.28 10,417	23,756 9,141 32,897 NA
8 KWH/Y 976,000 1,233,462 193,974 548,935 9 Truck Miles (3) DSNY RO RO Miles/Y 12,031 15,204 14,255 6,546 10 Commercial Truck Miles/Y 23,756 23,756 23,756 23,756 11 DSNY Rear-Loader Miles/Y 35,787 38,960 38,011 30,302 12 DSNY+Commercial Collection Miles/Y 35,787 38,960 38,011 30,302 13 Incl. Transport+Disposal DSNY Mi/Y w/ Transp-Disp 13,031 16,468 15,368 7,658 (With SAYT Projected Reductions) Delta v. Manual 2626 6063 4963 -2747 15 DSNY Mi/Y m/ Transp-Disp 4.3 4.2 3.95 2.0 16 DSNY Mi/Y m/ Transp-Disp 4.3 4.2 3.95 2.0 17 Delta v. Manual 60% 58% 48% -26% 18 Fuel (3) DSNY+Commercial Collection Gals/Day 33.4 35.9 35.4 25.7 </td <td>9,305 9,305 0.28 10,417</td> <td>23,756 9,141 32,897 NA</td>	9,305 9,305 0.28 10,417	23,756 9,141 32,897 NA
Truck Miles (3)	9,305 9,305 0.28 10,417	23,756 9,141 32,897 NA
Commercial Truck Miles/Y 23,756 23,756 23,756 23,756 11 DSNY Rear-Loader Miles/Y 35,787 38,960 38,011 30,302 12 DSNY+Commercial Collection Miles/Y 35,787 38,960 38,011 30,302 13 14 Incl. Transport+Disposal Multiple v. Manual 1.09 1.18 1.16 0.92 14 Incl. Transport+Disposal DSNY Mi/Y w/ Transp-Disp 13,031 16,468 15,368 7,658 15 15 16 16 16 16 16 16	9,305 0.28 10,417	9,141 32,897 NA
DSNY Rear-Loader Miles/Y 35,787 38,960 38,011 30,302 31,013 30,302 31,013 30,302 31,013 30,302 31,013 30,302 31,013 30,302 31,013 3	0.28 10,417	9,141 32,897 NA
13	0.28 10,417	NA
14 Incl. Transport+Disposal DSNY Mi/Y w/ Transp-Disp 13,031 16,468 15,368 7,658	10,417	
With SAYT Projected Reductions Delta v. Manual 2626 6063 4963 -2747 16 16 DSNY MI/Y/T w/ Transp-Disp 4.3 4.2 3.95 2.0 17 Delta v. Manual 60% 58% 48% -26% 18 Fuel (3) DSNY+Commercial Collection Gals/Day 33.4 35.9 35.4 25.7 19 DSNY+Commercial Collection Gals/Y 12,196 13,112 12,922 9,384 20 20 Delta v. Manual -13% -7% -8% -33% 21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473 20 20 20 20 20 20 20 2	12	10,405
15 Reductions) Delta v. Manual 2626 6063 4963 -2747 16 DSNY M/YT w/ Transp-Disp 4.3 4.2 3.95 2.0 17 Delta v. Manual 60% 58% 48% -26% 18 Fuel (3) DSNY+Commercial Collection Gals/Day 33.4 35.9 35.4 25.7 19 DSNY+Commercial Collection Gals/Y 12,196 13,112 12,922 9,384 20 Delta v. Manual -13% -7% -8% -33% 21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473		
16 DSNY MI/Y/T w/ Transp-Disp 4.3 4.2 3.95 2.0 17 Delta v. Manual 60% 58% 48% -26% 18 Fuel (3) DSNY+Commercial Collection Gals/Day 33.4 35.9 35.4 25.7 19 DSNY+Commercial Collection Gals/Pay 12,196 13,112 12,922 9,384 20 Delta v. Manual -13% -7% -8% -33% 21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473		NA
17 Delta v. Manual 60% 58% 48% -26% 18 Fuel (3) DSNY+Commercial Collection Gals/Day 33.4 35.9 35.4 25.7 19 DSNY+Commercial Collection Gals/Pair 12,196 13,112 12,922 9,384 20 Delta v. Manual -13% -7% -8% -33% 21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473	1.84	2.7
19 DSNY+Commercial Collection Gals/Y 12,196 13,112 12,922 9,384 20 Delta v. Manual -13% -7% -8% -33% 21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473	-31%	NA
20 Delta v. Manual -13% -7% -8% -33% 21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473	5.1	38.6
21 Incl. Transport+Disposal DSNY Gals/Y w/Transp-Disp 11,104 12,020 11,011 7,473	1,861	14,096
	-87%	NA 12.004
(With SAYT Projected	7,869	13,004
(With Safe Projected 22 Reductions) Delta v. Manual: -15% -8% -15% -43%	-39%	NA
23 DSNY Gals/V/T w/T-D 3.7 3.1 2.83 1.9	1.39	3.3
24 Delta v. Manual 9% -8% -15% -43%	-58%	NA
25 GHG Emissions (4) DSNY+Commercial Collection Tons CO2eq/Y: 473 571 211 303	313	157
DSNY+Commercial Collection Tons CO2eq/T	0.05	
26 (Wtd Avg) 0.10 0.10 0.04 0.05 27 Electric Tons CO2eq/T (Wtd Avg) 0.08 0.08 0.02 0.04	0.06	0.03
28 Diesel Tons CO2eq/T (Wid Avg): 0.02 0.02 0.02 0.02 0.02	0.004	0.03
29 Multiple v. Manual: 3.58 3.63 1.34 1.92	1.99	NA
30 Incl. Transport+Disposal DSNY Tons CO2eq/Y w/T-D 741 840 437 528	628	426
(With SAYT Projected		
31 Reductions) DSNY Tons C02eq/Y/T w/T-D 0.244 0.216 0.112 0.136	0.111	0.109
32 Delta v. Manual: -123% -97% -3% -24%	-1%	NA
	3,114,505,815	1,930,683,401
34 DSNY+Commercial Collection BTUs/T (Wtd Avg) 1,053,246 1,052,217 429,091 572,086 35 Multiple v. Manual 3.10 3.09 1.26 1.68	549,092 1.61	340,282 NA
36 Electric BTUS/T (Wtd Avg) 787,077 786,369 164,695 361,979	503,521	
37 Diesel BTUs/T (Wtd Avg) 266,169 265,848 264,396 210,108	45,571	330,472
	2,856,020,160	
39 Diesel BTUs/Y: 1,675,069,733 1,798,345,036 1,771,981,312 1,371,887,360	258,485,655	1,930,112,040
40 Incl. Transport+Disposal DSNY BTUs/Y w/Transp-Disp 4,625,031,851 5,816,637,079 2,168,411,527 2,979,494,900	3,948,984,944	1,779,039,109
41 (With SAYT Projected Delta v. Manual 160% 227% 22% 67%:	122%	NA
42 DSNY BTUS/Y/T w/T-D 1,522,995 1,494,934 557,303 765,760	696,212	457,231
43 Delta v. Manual 233% 227% 22% 67%	52%	NA
44 Cost (6) CapEx NA NA \$6,459,331 \$16,987,777 45 Annual OpEx w/ Replacement w/o Debt Service \$1,897,232 \$2,461,548 \$381,051 \$566,573	\$26,265,050	\$1,381,319
45 Annual OpEx w/ Replacement w/o Debt Service: \$1,897,232 \$2,461,548 \$381,051 \$566,573 46 OpEx/Ton w/o Debt Service: \$896 \$920 \$142 \$147	\$871,732 \$154	\$817,089 \$210
77	\$1,553,653	\$97,117
48 Debt Service/Ton: NA NA \$143 \$261	\$274	\$25
49 Annual Opex WITH DEBT SERVICE NA NA \$763,139 \$1,571,449	\$2,425,385	\$914,206
50 OpEx/Ton WITH DEBT SERVICE: NA NA \$285 \$408	\$428	\$235
51 Dray Costs \$107,536 \$134,708 \$120,454 \$38,024 52 Total Opex w/ DS, Dray \$2,004,768 \$2,596,256 \$883,593 \$1,609,473	\$50,074	NA NA
52 Total Opex W/ DS, Dray: \$2,004,768 \$2,596,256 \$883,593 \$1,609,473 53 Total Opex/T w/ DS, Dray: \$947 \$970 \$330 \$418	\$2,475,459 \$436	NA \$235
33 (utal opex) (w) 193 (lay 3947 3970 3330 3416 54 (Multiple v, Manual 4.0 4.1 1.4 1.8	1.9	\$235 NA
55 Incl. Transport+Disposal OpEx/Y w/ DS and Dray Incl Transp-Disp NA NA \$1,220,271 \$1,946,152	\$2,812,137	\$1,296,795
(With SAYT Projected		
56 Reductions) Delta v. Manual NA NA 0.94 1.50	2.17	NA
57 Opex w/DS and Dray/Y/T w/T-D: NA NA \$314 \$500	\$496	\$333
58 Delta v. Manual NA NA 0.94 1.50 59 <td< td=""><td>1.49</td><td>NA</td></td<>	1.49	NA
59 Total OpEx w/ Dray w/o Debt Service \$501,505 \$604,597	\$921,805	\$817,089
Oct \$163	\$210	
62 Multiple v. Manual 0.9 0.7	0.8 NA	Α
63 Notes 0.61 0.74	1.13	
64		
		te: residential
65 (1) Tonnage calculation: Scenario-specific tons refers to the tons collected by AVAC or DSNY rear-loaders in the No-AVAC scenario. North-Island Total tons for AVA refuse+ recyclables; RIOC facilities + park/street litterbins; business refuse & recyclables; 2011 figure based on data collected by the project team (see Appendix		

calculations based on 2011 AVAC plus projected tonnage after Southtown build-out. For tpd business refuse & recyclables and RIOC facilities & litterbins, see Appendix A-1 Ref4.

^{67 (2)} For detailed AVAC electricity use calculation see Elec worksheet.

68 (3) For detailed mileage calculations, garage and transfer point locations and fuel economy, see mileage worksheet.

69 (4) NYC-specific emission factors for electricity and vehicle fuel from NYCPlan 2011 inventory, for this and calculation using this coefficient see 2011 NYC Emissions Factors and CO2e coefficient worksheet.

70 (5) For energy use calculation see current operations worksheet.

71 (6) For cost calculation see cost-rev worksheet.

^{73 (7)} DSNY here refers to total refuse and recyclables handled by DSNY for each scenario. For tons, see current operations worksheet, cols. B-D. DSNY+Commercial Collection here refers to all waste collected on the island.

	А	В	С	D	Е	F G	Н	I	J	K	L	M N	0	Р	Q	R	S	
2	Table B-03. Pneumatic	vs. Mai	nual Ene	ergy Use	e and GI	IG Emissio	ns											
3		Ton	s Per Day	y (5)				KWH	Per Day					Gallon	ons Per Day			
4		2011 TPD	Projecte d TPD	Proj'd TPD Manual	Weight	2011 Actual (6)	Existing AVAC/ No- Action (6)	U (7)	UR (7)	URCL (7)	Manual	2011 Actual (1)	Existing AVAC/ No Action		UR	URCL	Manual (8)	
	AVAC System					2,649	3,348	531	1,504	2,293								
	Residential Refuse (3)	5.80	7.33		0.472													
7	Residential Recyclables (3)	2.62	3.23		0.208							3.3	4.1	4.1			4.1	
8	RIOC Street Litter Bins	0.20	0.20		0.013							1.4	1.4	1.4	1.4		1.4	
9	RIOC Facilities & Parks (2)(4)	0.10	0.10		0.006							0.4	0.4	0.4	0.4			
10	Business Refuse & Recyclables (2)	4.68	4.68		0.301							21.7	21.7	21.7	21.7		21.7	
	Hauled Off-Island by DSNY (refuse, paper, MGP)																	
	(3)(11)	8.32	10.66	10.66								6.6	8.3	7.8	3.6	5.1		
12	Manual (No AVAC) Residential Refuse(4)																11.4	
	Total/Day	13.40	15.54	10.66	1.000	2,649	3,348	531	1,504	2,293		33.4	35.9	35.4	25.7	5.1	38.6	
	Total/Year	4,891	5,672	3,891		967,000	1,222,088		548,935	837,017		12,196	13,112	12,922	9,384	1,861	14,096	
15	Weighted Average/Ton					457	457	73	142	148		7.224	7.383	7.383		0.33	6.543	
16	Weighted Average/Ton Electric																	
17	Weighted Average/Ton Diesel																	
18	Delta Over 2011 Actual Baseline (12)	100%	116%			100%	126%	20%	57%	87%		100%	108%	106%	77%	15%	116%	
19	Delta Over Projected Baseline (w/ Proj'd Tons)		100%				100%	16%	45%	68%			100%	99%	72%	14%	108%	
	Units Avoided v. Proj'd		10070				100%	10 70	4370	00 70			10070	JJ 70	7270	14 70	100%	
20	Baseline							1,028,114	673,153	385,071	1,222,088			190	3,727	11,251	(985)	
	Notes:		1					-,,	2.3/200		_,,			1200	-11		(555)	
72	(1) For fuel use see mileage	worksh	eet.	 	 	1	 	 	 	 	-			+	+	-	-	
23	(2) For tpd business refuse	& recvcla	ables and	RIOC fac	: ilities & lit	terbins . see	Appendix A-	1 Ref4.	-				+	+		†	†	
24	(3) Of 2.62 tpd recyclables, MGP%:	1.59 is F		1.03 is N	1GP. For c				ndix A-1 Ref	1, DS DATA.								
26	See Appendix A-1 Ref4; for	1411-00111P	decer-erac	3110-001100		e: 0.1 tons fo	r RIOC facili	ties and parks	added, som	e of this is r	ecycling but it is	s such a sm	all amount	all				
	assigned to refuse. (5) "2011 Actual" figures ba	sod on a	lata collea	tod by th	o project	toam (coo ^=	nondiy A 1	Pof3), all coan	ario calculat	ione based a	n projected too	nago after (Southtown	build-out (h 15.00		·	
	l.``				:			keis); ali scen	iai io calculat	ions based o	in projected ton	nage arter :	SOULIILOWN I	build-out (I	15.00			
	(6) DSNY electricity use ave (7) For electricity use see El			11, for de	tails see E	iec workshee	et.							-		ļ		
31	(7) For electricity use see El (8) See mileage worksheet	for tring	and dictar	nces In	the No-AV	MC case the	"DIOC facilit	i iec/littor bind	" value rofle	te only litter	hine: PIOC for	ilities are i	included in a	ow 8				
	factors for electricity and	ior trips	anu uistai	nces. In	ine No-AV	AC case, the	KIOC IdCIIII	ies/iitter bins	value reflec	is only litter	DITIS; KIUC TAC	incles are II	icidaea in r	OW 8	+	}	ļ	
	(10) http://www.onlineconv	orden -		ı htm	<u> </u>	 	 	 		 	<u> </u>			+	-	 	-	
	(10) http://www.onlineconv (11) For off-island collection				hoot	 	 	<u> </u>			ļ		- 	+	+	}	<u> </u>	
	(11) For on-Island collection (12) 2011 tons for actual ba						ļ	<u> </u>			<u> </u>					·		
	(12) 2011 tons for actual ba	iseille, L	n ojecteu i	COLIS III LI	ie deitas.		<u> </u>	<u> </u>	1	<u>i</u>	1			1		1	1	

	Т	U	V	W	Х	Y	Z	ΑА	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	
2																			
3			То	ns CO2 E	Equivaler	nt					Tons CO2	Eq/Ton W	aste			Вт			
4	Coeff t CO2e/uni t (9)	2011 Actual	Existing AVAC/ No- Action		UR	URCL	Manual		2011 Actual	Existing AVAC/ No- Action	U	UR	URCL	Manual	Coeff BTUs/unit (10)	2011 Actual	Existing AVAC/ No-Action	U	
5		0.92		0.19	0.52	0.80			0.16	0.16	0.025	0.050	0.051		3,412	9,039,837	11,424,483	1,813,335	
6																			
	0.0099	0.03		0.04			0.04		0.012	0.012	0.012			0.013	125,000	413,190	509,391	509,391	
8	0.0113	0.02	0.02	0.02	0.02		0.02		0.078	0.078	0.078	0.078		0.078	138,900	193,468	193,468	193,468	
9	0.0099	0.004	0.004	0.004	0.004				0.042	0.042	0.042	0.042			125,000	53,464	53,464	53,464	
10	0.0113	0.24	0.24	0.24	0.24		0.24		0.052	0.052	0.052	0.052		0.052	138,900	3,013,469	3,013,469	3,013,469	
11	0.0113	0.07	0.09	0.09	0.04	0.06			0.007	0.009	0.008	0.004	0.004		138,900	915,641	1,157,181	1,084,951	
12	0.0113						0.13							0.02	138,900				
13	0.0113	1.29	1.57	0.58	0.83		0.43							0.02	130,300	13,629,069	16,351,456	6,668,078	
14		473		211	303	313	157									4,974,610,080	5,968,281,371		
15									0.099	0.101	0.037	0.053	0.055	0.028					
16									0.078	0.079	0.016	0.036	0.051						
17									0.021	0.022	0.021	0.017	0.004	0.028					
18		100%	121%	45%	64%	66%	33%		100%	101%	37%	54%	55%	28%		100%	120%	49%	
19			100%	37%	53%	55%	27%			100%	37%	53%	55%	28%			100%	41%	
20		,		360	269	259	415		,		0.06	0.05	0.05	0.07				3,534,432,944	
21					ļ	ļ		ļ					ļ						
22 23	ļ	}			}	}	} 			<u> </u>	ļ	}			ļ	ļ		ļ	
24			-					+		-	-	-		-			<u> </u>		
25	†	 	-		<u> </u>	 	ļ			 	-	 			}	 	-	+	
26	1		<u> </u>					+		·	-					1	†		
27		<u> </u>	-			İ		1		1	 	<u> </u>	 	+				· · · · · · · · · · · · · · · · · · ·	
28	†	t	-		 	t	ļ				-	t		+	†	İ	-	÷	
29	·							+		-	-			-					
30		 	·		<u> </u>	 					-	 							
31	1		†					†		-			1			-			
32		1			Ì	1	Ì											<u> </u>	
33																			
34																			
35																			

	AL	AM	AN	ΑO	AP	AQ	AR	AS	AT	AU	ΑV	AW	AX	AY	AZ
2						<u> </u>		ļ							
3	s/Day					BTI	Us per Day/	Ton Waste				:	T	Diesel B	TUs/Day
		URCL	Manual		2011 Actual		U	UR	URCL	Manual			Existing AVAC/ No-Action	U	UR
5	5,131,629	7,824,713		+	1,558,593	1,558,593	247,385	485,950	503,521	ļ					
1 7			512,068		157,706	157,706	157,706	İ		158,535		413,190	509,391	509,391	
8	193,468		1,565		967,339	967,339	967,339	967,339		,		193,468	193,468	193,468	193,468
9	53,464		174,107		534,645	534,645	534,645	534,645		1,741,071		53,464	53,464	53,464	53,464
10	3,013,469		3,013,469		643,904	643,904	643,904	643,904		643,904		3,013,469	3,013,469	3,013,469	3,013,469
11	498,195	708,180			110,053	108,554	101,778	46,735	45,571			915,641	1,157,181	1,084,951	498,195
12			1,588,335							216,690					
	8,890,224	8,532,893	5,289,544							210,030		4,589,232	4,926,973	4,854,743	3,758,596
14		3,114,505,815	1,930,683,401									1,675,069,733	1,798,345,036	1,771,981,312	1,371,887,360
15					1,053,246	1,052,217	429,091	572,086	549,092	340,282		1,702,169.47	1,807,545.66	1,757,998.35	1,249,622.50
16					787,077	786,369	164,695	361,979	503,521						
17					266,169	265,848	264,396	210,108	45,571	330,472					
18	65%	63%	39%		100%	100%	41%	54%	52%	32%					
19	54%	52%	32%			100%	41%	54%	52%	32%					
20	2,723,349,570	2,853,775,556	4,037,597,970				623,126	480,131	503,125	711,935					
21				-			<u> </u>		-		-		!		
23							<u> </u>	<u></u>		†					
24			<u> </u>				ļ			ļ			ļ	<u> </u>	
25 26															
27				-			ļ		-	 	-				
28		}					<u> </u>	ļ		 					<u> </u>
29								ļ	-	-					·
30									<u> </u>	<u> </u>]				
31								ļ		ļ					
32 33				-		ļ	ļ	ļ	-	ļ	+		<u> </u>	<u> </u>	
34										ļ			!	<u> </u>	
35						<u> </u>					+				

	ВА	BB	ВС	BD	BE	BF	BG	ВН	BI
2									Ī
3						Electric BTU	s/Day		
4	URCL	Manual		2011 Actual	Existing AVAC/ No-Action	U	UR	URCL	Man ual
5 6				9,039,837	11,424,483	1,813,335	5,131,629	7,824,713	
7		512,068			<u> </u>	İ		Ì	i
8									
9		174,107							
10		3,013,469							
11	708,180								
12		1,588,335							
13	708,180	5,287,978		9,039,837	11,424,483	1,813,335	5,131,629	7,824,713	0
14	258,485,655	1,930,112,040		3,299,540,347	4,169,936,335	661,867,115	1,873,044,440	2,856,020,160	0
15	485,791	1,015,085.12		3,912,765	5,388,768	855,324	2,420,517	3,690,807	<u> </u>
16									
17									
18									
19									
20									
21			ļ						
22			ļ						<u> </u>
24			ļ			}			
25								-	. <u></u> l
26						†	†	1	†
27									†
28						1	1	<u> </u>	·
29				<u> </u>			<u> </u>		-
30									
31									
32			ļ			 	-	 	-
33 34					ļ				
35					!		ļ	ļ	-
				1	l.	·	(<u> </u>	<u> </u>

	ВЈ	BK	BL	ВМ	BN	ВО	BP	BQ	BR	BS	BT	BU	BV	BW
2	Table B-03A. Sensitivity A	nalysis Effe	ct of Electrici	ty Use On Ei	nergy Use an	d GHG Emis	sio	ns for l	Upgrade	e, Recy	cling, (Commerc	ial & Litt	ter
3				KWH	Per Day	:	ļ	Gal	lons Per	Day	ļ		T	ons CO2 Eq
4		Tons Per Day (5)	50% URCL	75%URCL	URCL 120%	URCL 150%		50% URCL	1	1	URCL 150%	Coeff t CO2e/uni t (9)	50% URCL	75%URC L
5		7.00	1.146.60	1 710 00								0.0000	0 2005	0 5000
<u>6</u>	<u> </u>	7.33	1,146.60	1,719.90	2,752	3,440			_	ļ	ļ	0.0003	0.3995	0.5993
	Residential Recyclables (3)	3.23						ļ	_		ļ	0.0099	ļ	
8	4													
9	RIOC Facilities & Parks (2)(4)	0.10										0.0099	0 0 0 0 0	
10	Business Refuse & Recyclables (2)	4.68										0.0113		
11	Hauled Off-Island by DSNY (refuse, paper, MGP) (3)(11)	10.66						5	5	5	5	0.0113	0.0575	0.0575
12	Manual (No AVAC) Residential Refuse(4)											0.0113		
13	Total/Day	15.54			2,752	3,440	1	5.10	5.10	5	5	1	0.46	0.66
14	Total/Year	5,672.10			1,004,420	1,255,526	1	1,861	1,861	1,861	1,861		166.81	239.72
15	Weighted Average/Ton		73.78	110.68	177.08	221.35	1							

	BX	BY	BZ	CA	СВ	CC	CD	CE	CF	CG	CH	CI
2												
3	uivalen	t		,	BTUs	J/Day				Tons CO2Eq	Ton Was	te
4	URCL 120%	URCL 150%	Coeff BTUs/unit (10)	50% URCL	75%URCL	URCL 120%	URCL 150%	: 1	50% URCL	75%URCL	URCL 120%	URCL 150%
5												
<u>6</u>	0.96	1.20	3,412	3,912,356	5,868,535	9,389,655	11,737,069		0.03	0.04	0.06	0.08
7	<u> </u>		125,000									
8	ļ											
9			125,000									
10			138,900									
11	0.06	0.06	138,900	708,180	708,180	708,180	708,180		0.004	0.004	0.004	0.004
12			138,900									
13	1.02	1.26	1	4,620,536	6,576,714	10,097,835	12,445,249		0.03	0.04	0.07	0.08
14	371	458		1,686,495,735	2,400,500,775	4	4,542,515,895				†	
15	1	1	†						0.03	0.04	0.07	0.08

А	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
1 Table B	-04. Pneumatic vs Manual Mileage Factors													
2	Total System (on RI and off RI)	†		†			·				1			
3	No AVAC Scenario:												Î	
	Recyclables, DSNY 1-bin rear-				Miles/		Gals/							
4	loader(1,3,12):	Tons/Wk	Trips/ Wk	Miles/ Wk	Day	Gals/ Wk	Day						ļ	
5	Paper: garage-Island-rte-paper dump-garage	13.7	2	39.4										
6	MGP: garage-Island-rte-MGP dump-garage	8.9	1				<u> </u>				<u>.</u>		.ii	
7	Subtotal			62.8	9.0		4.1	,						
8	Refuse, DSNY rear-loader(3):													
9	Garage-Island-rte-refuse dump-garage(12,13):	51.3	5	112.5										
10	Subtotal			112.5	16.1		7.3							
11	Total			175.3	25.0		11.4				1			
12	Current DSNY Off-Island Transport from AVA	C & AVAC y	ard:											
12					Miles/	0 1 (11)	Gals/							
13	Roll-On Roll-Off pick-up from AVAC facility(11):	-		Miles/ Wk	Day	Gals/ Wk	Day (15)	l. <u></u>			<u>.</u>	Refuse	. d d.	осс
14	Round trips garage-AVAC(2)	ļ	6.00	4			ļ 	Current	% Iotal R	O RO miles				0.44
15	Round trips AVAC-dump(7)	ļ	2.75						-		s per week	. 4		101
16	Round trips AVAC-mgp (7)		2.48			 			 		es per year			5,263
17 18	Round trips AVAC-OCC(7) Subtotal		5.92		22.0	}	6.6		ļ	Total gallor	ns per year	933	414	1,053
19	Future DSNY Off-Island Transport (15):			230.7	33.0	1	6.6		0/ T-+-I D/	0.00:		0.39	0.17	0.44
20 No-Act.	Round trips garage-AVAC(2)	1	7.58	179.0				NO-ACTION	% Total R			<u> </u>		128
21 (Proj'd T)			3.48	2		÷			. 		s per week es per year			6,651
22 (РЮ) (1)	Round trips AVAC-dump(7)		3.48	4		 			ļ					1,330
23	Round trips AVAC-High (7) Round trips AVAC-OCC(7)		7.49			ļ	ļ		ļ	Total gallor	is per year	1,1/9	523	1,330
24	Subtotal	ļ	7.49	291.6	41.7		8.3	 	0/- Total D/	O RO miles	by fraction	0.27	0.21	0.52
25 U	Round trips garage-AVAC(2)		7.58		41.7	<u> </u>	0.3	10	190 TOLAT K		s per week			143
26	Trips AVAC-dump (6)	-	2.03							,	es per year	. 1		7,437
27	Subtotal	ļ	2.03	204.5	29.2				 		ns per year	. i		1,487
28	Total trips MGP-mgp and occ, same as No-Action	÷	8.40		39.1	. 4	7.8	 	 	Total galloi	is per year	//0	303	1,407
29 UR	Round trips, garage to AVAC per week		3.77	1	39.1		7.0	UR	0/2 Total D/	O RO miles	by fraction	0.69	0.15	0.15
30	Round trips, garage to AVAC per week	ļ	2.02	4		 	ļ	- · · · · · · · · · · · · · · · · · · ·	70 IOCAI K		s per week			19
31	Round trips AVAC-dump (6)		0.91			}			÷		es per year		-ii-	982
32	Round trips AVAC-MGF		0.91	4		}	ļ	 	÷	Total gallor		4	-4	196
33	Subtotal	<u> </u>	0.03	125.5	17.9	<u> </u>	3.6		·	Total yallol	is her Aegi	307	202	190
34 URCL	Round trips garage to AVAC		5.28		17.9		3.0	URCL	% Total R	O RO miles	by fraction	0.75	0.12	0.13
25		 	2.24	40.5			İ							
35	Round trips AVAC-dump (6)	<u> </u>	3.21				ļ				s per week	- 4		23
36	Round trips AVAC-MGP (8)	ļ	1.02			ļ	ļ		<u> </u>		es per year	- 4		1,199
37	Round trips AVAC-OCC	ļ	1.05					 	ļ	Iotal gallor	ns per year	1,398	218	240
38	Subtotal	1	1	178.4	25.5	4	5.1			1		1	1 1	

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
39		Current Private Carter(14)													
40		Commercial Waste, rear-loaders, E-Z Paks(1)(3)	Trash/Recy												
41		Carter 1	Т	7	46.2		15.4			<u> </u>					
42			R	5	37.0		12.3			<u>.</u>					<u> </u>
43		Carter 2		3	65.4		21.8								
44		Carter 3		2	11.2		3.7			ļ		ļ		ļ	
45			R	1	8.1		2.7					<u> </u>		<u> </u>	
46		Carter 4		6	81.0		27.0					ļ		ļ	ļ I
47			R	6	81.0		27.0			ļ		ļ		ļ	
48		Carter 5		3	24.0		8.0				}	ļ		ļ	
49 50		.4	R	3	19.2		6.4					ļ		ļ	
51		Carter 6		3	39.6 42.9		13.2 14.3			 		<u> </u>		<u> </u>	
52		TOTAL	R	42	42.9	65.1	151.9	21.7		ļ	ļ	ļ	ļ	ļ	
53		Trips/day		6		05.1	151.9	21.7		ļ					
54	Hospital		Coler	1			25	3.6				ļ		ļ	
55	Поэрісаі	Current Litter Bins(4)	Colei	- 1		8.4	9.75	1.4		<u> </u>	 				
56		Current RIOC/Parks(5)				7.1	3.0	0.4		<u> </u>					
57		Subtotal				15.5		1.8		 				<u> </u>	
58		Current Residential Recyclables(9)(10)								†	<u> </u>	<u> </u>	 	<u> </u>	
59			Rivercross			1.2	0.6			·		†		†	
60		· i	Octagon			0.4	0.3					<u> </u>		<u> </u>	
61			The Child Sc	hool		0.0	0.0								
62			Roosevelt La	ındings		0.2	0.2					1			
63			IS/PS 217			0.0	0.0								
64			Southtown			2.4	5.7								
65		\$	Island House			4.0	1.7			<u> </u>			ļ		
66			Manhattan P			0.8	0.4								
67			Cornell/Rela	ted	42.4	6.1	14.1	2.2		ļ					
68 69			TOTAL			15.1	23.1	3.3		ļ		<u> </u>		<u> </u>	
70	Locations		120 15 21							ļ	ļ	ļ		ļ	I
$\frac{70}{71}$			120-15 31st 127-20 34th							 			-	<u> </u>	
72			860 Humbol							 	}	ļ	ļ	ļ	
73			30-27 Greer									}		}	÷
74		22 131 damp (Simb Recycling)	23 2, GICEI	point Avely	2.001(1)11						-	}		<u> </u>	
	Distances	s (miles)								 	-		 		
76		DSNY garage-RI	11.8							1		<u> </u>		1	
77		RI DSNY collection route	2.8			-				†	<u> </u>	 	<u> </u>	<u> </u>	
78		RI-DSNY refuse dump	6.3							1					
79		DSNY refuse dump-garage	1.6								1				
80		RI-DSNY paper dump	3.3]				
81		DSNY paper dump-DSNY garage	1.8							1					
82		RI-DSNY MGP dump	3.1												
83		DSNY MGP dump-DSNY garage	5.7					T				ļ		ļ	
84	Notes:												<u> </u>	!	

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
85	(4) =					<u> </u>									
86		curbside route distance incl. parks at south end (es calculated using Google maps.	2.8 miles):5	76 Main St.	to 1 Main	Street .8 m	ii;405 Mai	n St. to 88	8 Main Stree	et 1.4 mi;88	8 Main St.	to 576 Mai	in Street .6		
	(2) For cur	es calculated using Google maps. rent off-Island transport, an avg of 2 container pic	kups por day	of vanding	fractions (11 15 ava	total pick-	in tring/wh	() thoroforo	accumo iuc	t 6 round-t	ring/wk ho	twoon		
		AVAC. Same assumption made for future U scena			mactions (11.13 avg	total pick-	ap trips/wk	c), therefore	assume jus	t o round-t	iips/wk be	tween		
		tan Rear-loader fuel economy from Multi-Fleet De			Regenera	tive Braking	Technolo	av In Refu	se Truck Apr	lications. Fi	nal Report	prepared	1		
89	· /	OA, 2011, p44 Table 26. http://bit.ly/13b9Wd0, la		,			,	3,		,		pp	2.19		,
90	Fuel econo	my assumed for private carters (assumed higher t	han DSNY be	ecause som	e collection	is use ro-ro	s and trip	may invo	lve fewer sto	ps than for	DSNY colle	ections):	3		:
91	(4)(route o	istance*trips per week)/mileage=5-mile pick-up r	oute * 5 time	es a week -	- 14-mile r	ound-trip to	dump on	ce a wk, 6	mpg. Trip inf	formation fr	om UTRC F	ield Surve	у		
92	(Fernando	Vargas, RIOC, interview and tour Lisa Douglass, 1	1/28/11 and	12/5/11 (t	our)										: 1
93	Assumed n	pg for RIOC 10 cy rear-loader (imputed from Cell	M88, for a 2	5cy rear-lo	ader)								4		
		sing: http://www.mpgbuddy.com/index.php, acces	,	, , , , ,			,		•			•			
		(route distance*trips per week)+(off-island dispos	al*trips per	week))/mile	eage. Trip ii	nformation	and fuel e	conomy fro	om Sean Sin	gh, RIOC, te	elecon Julie	tte Spertu	s, 10-13-		
96													.,		ļ
97	RIOC pick-	ıp truck mpg		,									16.7		,
		h it would be most efficient for AVAC refuse conta													,
		for consistency we are assuming that refuse cont nd returned to RI.	ainers would	still be tak	en to Tully.	As in all of	ner cases	empty co	ntainers wou	на ве ріскес	up at the	aump site	with each		,
		DSNY truck trips from terminal to dump or recycl	ing facility fr	om DSNV (ollection D	ata (SCAN)	FV2012		T	·	7	·	Ţ		
		rcial OCC=.57tpd; MPG=.14tpd. (Appendix A-1, I		OIII DON'I C	i i i i i i i i i i i i i i i i i i i	ata (SCAN)	1112012.				·	·			
		onomy for light trucks: NYC-specific emission factor		Plan 2010	nventory, l	http://home	e2.nvc.gov	: /html/om/	/pdf/2010/pr	412-10 rep	ort.pdf, tab	.:			
		system version uses 2011 actual (e.g., actual mix											pothetical		
105	on-Ísland-	only version assumes all light-trucks.	·			, ,									:
106	(11) Assun	ned fuel economy for Ro-Ro trucks, mpg:								1			5		
107	(12) DSNY	locations:Brautigam to Miller, 10-11-11. The North	Shore MTS	(adjacent t	o the DSN	Y garage, a	nd near th	e present	(Tully) trans	fer station,	will be used	d when con	struction		
1.00		d, but the Tully transfer station is used in all cases													: 1
109		s refuse collection 2x wk and recycling collection													,
1,,,		is assumed that in each case (refuse and recyclab	le fractions)	, the truck's	RI route r	represents a	a full load.	In the cas	se of paper, 1	L3.7 tons is	too much f	or 1 trip. A	\ typical		
		paper load is somewhat under 7 tons.	/D	h- M:II C	20 11)		T				714/4 +				,
	(13) Projec Starts/wk.	ted refuse tonnage=51.3tpwk. Per DSNY protocol	(Brautigam)	to Miller, 6-	30-11), nu	mper or Sta	art Irucks	based on t	argeted tons	aivided by	∠wa tonna	ages, =5 Ir	ruck		,
		naissance Report, Reference Documents, Reference	- 5. Fuel F	ctimated di	ctancec ha	sed on the	distance h	etween the	a farthact DI	customera	nd the cart	or's transf	or station		
114	for that fra	ction, 1-way, x the maximum number of collection	s ner week d	on RI for th	at carter R	ound-trin d	istances (1	rom the ca	e iditilest KI arter's darad	e to RI, or f	rom the du	mn site to	the		
		e not included, since the volumes collected on RI r													:
116	truck's mile	es is attributed to the RI portion of the load.	•												
117	(15) All fut	ure scenarios assume projected tons, or relative to	current 20:	11 tons, a p	rojected in	crease of:		[1.26		

Source: http://nytelecom.vo.llnwd.net/o15/agencies/planyc2030/pdf/greenhousegas_2011.pdf

Last accessed 2-5-13.

Appendix H

Electricity Emissions Coefficients

			20	05 ELECTRIC	ITY EMISSIONS C	DEFFICENT					
	Generation (GJ)	CO ₂ (Mg)	CO ₂ /GJ (kg)	CH ₄ (Mg)	CH ₄ /GJ (kg)	N ₂ O (Mg)	N ₂ O/GJ (kg)	CO ₂ e (Mg)	CO₂e/GJ (kg)	Source energy (GJ)	Source GJ/GJ
In-city	88,618,432	13,939,008	157.292	274.78	0.00310	29.72	0.00034	13,953,992	157.462	233,463,499	2.634
Contract	63,154,249	2,045,234	32.385	38.57	0.00061	3.86	0.00006	2,047,240	32.417	221,522,697	3.508
NYISO Zone A	13,308,192	1,358,448	102.076	15.04	0.00113	21.85	0.00164	1,365,536	77.907	16,451,345	1.236
NYISO Zone D	5,613,408	170,458	30.366	3.22	0.00057	0.32	0.00006	170,625	102.609	3,849,636	0.686
Market procurement (Zone G, H, I)	23,730,919	3,753,034	158.150	84.58	0.00356	44.94	0.00189	3,768,740	30.396	68,670,819	2.894
Total	194,425,200	21,266,182	109.380	416.20	0.00214	100.68	0.00052	21,306,134	109.585	543,957,994	2.798
Total 2005 NYC consumption	185,030,541			C	oefficient with t	ransmission	and distribution	losses			
Transmission and distribution loss rate	-4.83%		114.665		0.00224		0.00054		115.149		
					ITY EMISSIONS C						
	Generation (GJ)	CO ₂ (Mg)	CO ₂ /GJ (kg)	CH ₄ (Mg)	CH₄/GJ (kg)		N ₂ O/GJ (kg)	CO ₂ e (Mg)	CO ₂ e/GJ (kg)	Source energy (GJ)	Source GJ/GJ
Total	191,145,600	16,238,006	84.951	328.16	0.00172	84.47	0.00044	18,207,698	95.256	581,737,144	3.043
Total 2006 NYC consumption	181,779,844			C	oefficient with t	ransmission		losses			
Transmission and distribution loss rate	-4.90%		89.113		0.00180		0.00046		100.163		
			20	07 FLECTRIC	ITY EMISSIONS C	DEFEICENT					
	Generation (GJ)	CO ₂ (Mg)	CO ₂ /GJ (kg)	CH ₄ (Mg)	CH₄/GJ (kg)	N ₂ O (Mg)	N ₂ O/GJ (kg)	CO ₂ e (Mg)	CO₂e/GJ (kg)	Source energy (GJ)	Source GJ/GJ
Total	197,100,000	17,370,651	94.809	329.64	0.00175	69.212	0.00046	17,399,030	94,989	572,790,221	2.906
Total 2007 NYC consumption	188,202,200	17,570,031	74.007		coefficient with t				74.707	372,770,221	2.700
Transmission and distribution loss rate	-4.51%		99.090		0.00182	141131111331011	0.00048	103363	99.480		
Transmission and distribution loss rate	7.51%						0.00040		77.400		
			20	08 ELECTRIC	ITY EMISSIONS C	DEFFICENT					
	Generation (GJ)	CO ₂ (Mg)	CO ₂ /GJ (kg)	CH ₄ (Mg)	CH ₄ /GJ (kg)	N ₂ O (Mg)	N ₂ O/GJ (kg)	CO ₂ e (Mg)	CO ₂ e/GJ (kg)	Source energy (GJ)	Source GJ/GJ
Total	197,406,000	18,097,970	91.679	322.32	0.00163	91.96	0.00047	18,133,245	91.858	566,884,779	2.872
Total 2007 NYC consumption	186,150,634			С	oefficient with to	ransmission		losses			
Transmission and distribution loss rate	-5.70%		96.906		0.00173		0.00049		97.412		
			20	NO ELECTRIC	ITY EMISSIONS C	DEFEICENT					
	Generation (GJ)	CO ₂ (Mg)	CO ₂ /GJ (kg)	CH ₄ (Mg)	CH₄/GJ (kg)	N ₂ O (Mg)	N ₂ O/GJ (kg)	CO ₂ e (Mg)	CO2e/GJ (kg)	Source energy (GJ)	Source GJ/GJ
	83,690,030	10,784,766	128.866	204.98	0.00245	20.79	0.00025	10,795,517	128.994	214,179,004	2.559
Contract	51,125,157	1,630,338	31.889	30.75	0.00060	3.07	0.00025	1,631,937	31.920	215,435,675	4.214
NYISO Zone A	13,308,192	1,035,413	77.803	11.08	0.00083	17.35	0.00130	1,041,025	78.224	11,969,363	0.899
NYISO Zone D	5,613,408	102,679	18.292	1.94	0.00035	0.19	0.00003	102,780	18.310	2,043,149	0.364
Market procurement (Zone G, H, I)	34,899,058	2,481,293	71.099	38.66	0.00111	36.12	0.00104	2,493,303	71.443	97,101,617	2.782
Market procurement (ROS)	2,524,154	133,372	52.838	0.96	0.00038	0.90	0.00036	133,802	53.009	4,440,372	1.759
Total	191,160,000	16,167,861	84.578	288.37	0.00151	78.44	0.00030	16,198,364	84.737	545,169,181	2.852
Total 2009 NYC consumption	182,649,671	10,107,001	0.1370		oefficient with t				011,37	313,207,202	2.032
Transmission and distribution loss rate	-4.45%		88.343		0.00158		0.00043		88,685		
					ITY EMISSIONS C						
	Generation (GJ)	CO ₂ (Mg)	CO ₂ /GJ (kg)	CH ₄ (Mg)	CH ₄ /GJ (kg)	N ₂ O (Mg)	N ₂ O/GJ (kg)	CO ₂ e (Mg)	CO ₂ e/GJ (kg)	Source energy (GJ)	Source GJ/GJ
In-city	86,233,586	11,021,449	127.809	209.44	0.00243	21.24	0.00025	11,032,431	127.937	218,888,739	2.538
Contract	48,658,118	1,805,308	37.102	34.05	0.00070	3.40	0.00007	1,807,079	37.138	217,473,479	4.469
NYISO Zone A	13,308,192	1,149,229	86.355	12.37	0.00093	19.13	0.00144	1,155,420	86.820	13,169,352	0.990
NYISO Zone D	5,613,408	41,261	7.350	0.78	0.00014	0.08	0.00001	41,302	7.358	820,968	0.146
Market procurement (Zone G, H, I)	38,229,527	2,318,993	60.660	39.13	0.00102	31.53	0.00082	2,329,591	60.937	107,223,986	2.805
Market procurement (ROS)	6,367,569	375,193	58.922	2.35	0.00037	1.90	0.00030	376,333	59.102	11,365,231	1.785
Total	198,410,400	16,711,433	84.227	298.12	0.00150	77.29	0.00039	16,742,155	84.381	568,941,755	2.867
Total 2010 NYC consumption	190,667,806			C	oefficient with t	ransmission		losses			
Transmission and distribution loss rate	-3.90%		87.647		0.00156		0.00041		87.808		

Appendix I

Fuel Emissions Coefficients

		20:	10 FUEL EMISSIONS COEFFI	CIENTS			
			GREENHOUSE GAS	(Kg/UNIT)			FUEL EFFICIENCY
	UNIT	CO ₂	CH ₄	N ₂ O	CO ₂ e	GJ/UNIT	(Km/UNIT)
Stationary source							
Natural gas (buildings)	GJ	50.25326	0.00474	0.00009	50.38216	0.99995	
Natural gas (industrials)	GJ	50.25326	0.00095	0.00009	50.30254	0.99995	
#2 fuel oil (buildings)	liter	2.69627	0.00040	0.00002	2.71147	0.03846	
#2 fuel oil (industrial)	liter	2.69627	0.00011	0.00002	2.70534	0.03846	
#4 fuel oil (buildings)	liter	2.89423	0.00042	0.00002	2.91031	0.04069	
#4 fuel oil (industrial)	liter	2.89423	0.00012	0.00002	2.90383	0.04069	
#6 residual fuel oil (buildings)	liter	2.97590	0.00044	0.00002	2.99242	0.04181	
#6 residual fuel oil (industrial)	liter	2.97590	0.00012	0.00002	2.98576	0.04181	
100% biodiesel*	liter	2.49683	0.00004	0.00000	2.49876	0.03567	
Propane (industrial)	liter	1.47748	0.00007	0.00001	1.48346	0.02536	
Kerosene (industrial)	liter	2.68187	0.00011	0.00002	2.69075	0.03762	
Mobile source							
On-road							
Diesel - buses	liter	2.69720	0.00002	0.00002	2.70253	0.03849	5.38
Diesel - light trucks	liter	2.69720	0.00000	0.00000	2.69851	0.03849	4.38
Diesel - heavy-duty vehicles	liter	2.69720	0.00001	0.00001	2.70082	0.03849	3.65
Diesel - passenger cars	liter	2.69720	0.00000	0.00000	2.69854	0.03849	6.73
Gasoline - light trucks	liter	2.31968	0.00012	0.00017	2.37403	0.03484	6.23
Gasoline - passenger cars	liter	2.31943	0.00015	0.00016	2.37200	0.03484	8.72
100% biodiesel (B100) - heavy trucks*	liter	2.49710	0.00004	0.00000	2.49903	0.03568	3.65
100% ethanol (E100) - passenger cars*	liter	1.51899	0.00022	0.00027	1.60857	0.02342	6.58
Compressed natural gas - bus	GJ	50.28833	0.10395	0.00925	55.33978	1.00000	0.37
Off-road	•	·		<u>'</u>			
Aviation gasoline	liter	2.19527	0.00186	0.00003	2.24333	0.03350	
Diesel, locomotives	liter	2.52840	0.00007	0.00008	2.55529	0.03763	
Diesel, ships and boats	liter	2.69720	0.00021	0.00007	2.72293	0.03866	
Jet fuel	liter	2.69749	0.00020	0.00007	2.72289	0.03866	

^{*} Per the LGOP, CO, from biofuels is considered biogenic and is reported as a Scope 3 source
** Per the LGOP, building usage here is identified as residential, commerical, or institutional

	A	В	С	D	E	F
1	Table B-05 PlaNY	C Emissions Coeff	icients (unit co	onversion)		
	PlaNYC Factors	kg CO2e/GJ(1)	kwh per Giga Joule	kg CO2e/kwh	kg per ton (US)	t CO2e/kwh
3	electricity	87.808	277.77	0.316117651	907.18	0.000348462
4						
5 6						
7				<u> </u>		
8		kg CO2e/liter (2)	liters per gallon	kg CO2e/gallon	kg per ton (US)	t CO2e/gallon
9	gasoline ld truck	2.37	3.78541	8.986676902	907.18	0.009906167
	diesel hd truck	2.70	3.78541	10.22371104	907.18	0.011269771
11						
	Notes:					
	(1) See 2011 NYC Endistribution losses	missions Factors works	heet, Appendix F	I, Coefficient with trans	mission and	
	(2) See 2011 NYC Er	missions Factors works	heet, Appendix I			
16						
				age of emissions from		
				n: 87.81 kg CO2e/GJ *		
				r day/tons collected pe	er day = tons CO2	e emissions per ton.
21	•	gasoline to CO2e/I con				
		- -		from NYCPlan 2011 inv		H, I
	inttp://nytelecom.vo.	.iinwa.net/o15/agencie	es/pianyc2030/pd	f/greenhousegas_2011	.par	

	Α	В	С	D	Е
1	Table B-06. Pneumatic vs. Manual Potenti	ally Achieva	able Waste	-Generator	Savings
2		-			·····
3	Annual Cost to Building Managers for Refuse Handlin	g Space, Labor	& Equipment		
4		Space	Labor	Equipment	Total
5	Manual (No AVAC) (Refuse & Recycling Staging)	\$1,134,231	\$837,096	\$295,524	\$2,266,851
6	No-Action or Upgrade-Only ""	\$343,142	\$711,971	\$125,488	\$1,180,601
7	Upgrade +Rec (4)	\$104,452	\$711,971	\$0	\$816,423
8	Savings, Upgrade v. Manual (N0-AVAC)	\$791,089	\$125,125	\$170,036	\$1,086,250
9	Savings, Upgrade v. Manual (labor & equipment only)		\$125,125	L	\$295,161
15	Additional Savings, Upgrade + Rec v. No-Action or Upgrad	\$238,691	\$0	\$125,488	\$364,178
16					
17	Annual Cost to RIOC of AVAC Terminal Space				
		As Land	#Parking	Rent as	
18		Lease(1)	Spaces(2)	Parking Lot(3)	
	No-Action	\$63,425	120	\$338,231	
_	No-AVAC	\$36,591	69	\$195,128	
	Upgrade-only	\$40,368	76	\$215,271	
	Upgrade +Rec	\$25,413	48	\$135,521	
23	Upgrade+Comm+Litter	\$30,852	58	\$164,527	
24					
25	(1) Using land lease/sf/year cost for Manhattan Park. See F				
26	(2) 200sf per space, 150 for aisles, see planning for shopp	ing center parkir	ng,		
27	http://www.planning.org/pas/at60/report59.htm).				
28	(3) Using current \$235 monthly rate for reserved parking s	pot at Motorgate	e garage on Ro	osevelt Island,	
	http://www.rioc.com/parking.htm				
30	(4) SF in waste rooms and labor to collect recyclables, but		-		
31 32	assumed that porters would continue to collect recyclables				
	NOTE: Current space in existing Roosevelt Island residentia				
33 34	example, refuse and recyclables tend to be staged in baser	•		-	1
	calculations here are meant to illustrate the savings that co			J 1	,
	inventoried in the Reconaissance Report (Appendix A-1), th				
36	and the Planning Department's "Quality Housing Program"	(which currently	only applies to	certain districts).

	Α	В	С	D	E	F	G	Н	I	J	K	L	М
1	Table B-06. Pn	eumatic vs.	Manual Pote	ntially Achie	vable Waste-	Generator Savin	gs		(continued)				
2	Space												
3	Location	Residential Units(17)	Manual Central Refuse Staging SF (9)	Central Recycl'g Staging SF (2)	Recycl'g storage in Waste Rooms SF (2)	Value In Annual Rent for Manual Recycling Staging(18)	Value In Annual Rent for Manual Refuse Staging(18)	Public space required 1x week for recyclables staging (DSNY collection) SF	Public Space Req. 4x Week for Refuse Staging (DSNY Collection) SF		# Existing Central Int. Recycling Staging Areas(17)	Valves	Existing Exterior Recycling Staging Areas SF (6)
	Residential Buildings												
	Octagon	501	1452.9	438.375	130	\$26,563	\$67,901	365	202	26	0	2	0
	Manhattan Park	1107	3210.3	968.625	560	\$71,440	\$150,032	806	446	112	0	4	2241
	Westview	371	1075.9	324.625	140	\$21,714	\$50,282	270	150	112 28	0	2	0
	Roosevelt										}		
8	Landings (1)	1003	2908.7	877.625	275	\$53,867	\$135,937	730	404	55	2	6	0
	Island House	400	1160	350		\$25,938	\$54,212			41	1	1	0
10	Rivercross	377	1093.3	329.875	250	\$27,100				50		6	0
	South Town										}		
11	Buildings	1278	3706.2	1118.25	450	\$73,291	\$173,207	931	515	90	6	6	0
	Planned Future South Town Buildings	800	2320	700	225	\$43,229	\$108,424	583	322	45	0	3	0
-	Total				f						<u> </u>		
13	Residential	5837	16927.3	5107.375	2235	\$343,142	\$ 791,089	4251	2352	447	11	30	2241
14	Businesses (6)	NA								NA	NA	NA	400
	SF sidewalk requi				[16]		4						
	Annual cost of cor			ce (15)			\$3,193						
	Labor minutes/ba						9				}		
	Labor minutes/ba			kly collection (13)		11.5						
	Pounds of recyclin						1.0						
	Pounds of refuse						2.3						
	Annual Ext Lease						\$2						
	Annual Residenti						\$47				}		
23	Total Imputed Ani	nual Labor hou	ırs (10)				19,188						
	Imputed annual la			unit (10)			3.81						
	SF Central Recycle						0.88				}		
	SF Recylables/Wa						5				}		
	SF Central Refuse		(9)				2.9				}		
	SF Existing Termi				<u> </u>		41,979					<u> </u>	
	SF Existing Termi		ss, bulk & recy	clables staging	(4)		24,218				<u> </u>		
	SF Terminal U (3)				ļ		26,718				<u> </u>		
	SF Terminal UR (16,820				<u> </u>		
	SF Terminal URCI						20,420						
	Labor \$/Employee	e/Yr(8)					\$60,000						
_	Labor \$/hour	1			<u> </u>		\$29						
35	Annual imputed re	ecycling equip	ment cost/unit	(bins only) (11	1)		\$0.20				1		

	0	Р	Q	R	S	Т	U	V
1	Table B-06. Pn	eumatic vs.	Manual Potentially Ac	hievable Waste-Gen	erator Savings			(continued)
2	Labor		,					(
3	Location	Residential Units(17)	Current Imputed Annual Hours Recyclables Handling (10)	Current Imputed Annual Cost Manual Recyclables Handling (8)	Annual Hours for Recycling Staging (DSNY Collection) (12)	Annual Cost for Recycling Staging (DSNY Collection) (13)	Annual Hours for Manual Refuse Handling	Annual Cost for Refuse Staging (DSNY Collection) (14)
4	Residential Buildings							
5	Octagon	501	1909	\$55,053	912	\$26,294	1,579	\$45,555
6	Manhattan Park	1107	4217	\$121,645	2,014	\$58,100	3,489	\$100,657
7	Westview	371	1413	\$40,768	675	\$19,472	1,169	\$33,734
8	Roosevelt Landings (1) Island House	1003 400	<u> </u>	\$110,216 \$43,955	·	\$52,641 \$20,994	<u>}</u>	\$91,201 \$36,371
10	Rivercross	377		\$41,427		\$20,994 \$19,786	\	\$30,371 \$34,280
11	South Town Buildings	1278		\$140,435		\$67,075		\$116,206
12	Planned Future South Town Buildings	800	3048	\$158,471	1,456	\$41,987	2,522	\$72,742
13	Total Residential	5,837	22,236	\$711,971	10,620	\$306,349	18,399	\$530,747
14	Businesses (6)	NA						

	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH
1	Table B-06. Pne	eumatic vs.	Manual Potentia	IIv Achievable	Waste-Gene	rator Savings	(continued)			
2	Equipment			,		J	(-
3	Location	Residential Units(17)	Current Estimated Annual Bin & Bag Cost, Recyclables Handling(7)	Projected Ann. Cost Compactor Incl. Maint. (DSNY collection) (15)	60 Gal Bags Refuse/Day (12)	60 Gal Bags Refuse/Y	Annual Cost Refuse Bags (12)	60 Gal Bags Recycling/D ay (13)	60 Gal Bags Recycling/Y	Annual Cost Recycling Bags (12)
	Residential								····· ·	
4	Buildings									
5	Octagon	501	\$5,437	\$6,387	29	10,528	\$11,808	13	4,756	\$5,334
6	Manhattan Park	1107	\$12,013	\$12,773	64	23,263	\$26,092	29	10,508	\$11,786
7	Westview	371	\$4,026	\$6,387	21	7,796	\$8,744	10	3,522	\$3,950
8	Roosevelt Landings (1)	1003	\$10,884	\$19,160	58	21,078	\$23,641	26	9,521	\$10,679
9	Island House	400	\$4,341	\$3,193	23	8,406	\$9,428	10	3,797	\$4,259
10	Rivercross	377	\$4,091	\$19,160	22	7,922	\$8,886	10	3,579	\$4,014
11	South Town Buildings	1278	\$13,868	\$19,160	74	26,857	\$30,122	33	12,132	\$13,607
12	Planned Future South Town Buildings	800	\$8,681	\$9,580	46	16,812	\$18,856	21	7,594	\$8,518
	Total									
13	Residential	5837	\$63,341	\$95,800	336	122,662	\$137,577	152	55,409	\$62,147
14	Businesses (6)	NA								

Notes

- (1) Roosevelt Landings is very complicated and number of waste rooms wasn't calculated during the building survey. There are 4 wings with corridors every 3rd floor, or 7 corridors. Each has at least 1 waste room. According to the building survey, there are no waste rooms in the 3 rear wings; residents walk their waste accross via corridor. There seems to be at least 1 waste room at each of the 3 corridors of the 3 wings facing main street. This would account for 7 valves, or 37 waste rooms. Not including floor mounted valves in the basement, there are 3 other chutes shown on the network map. Assume that these are located on 3-floor buildings.
- (2) Resident waste room refers to the space where residents deposit their trash. Local Law 60 of 2012 amends the building code so that new multifamily buildings must provide 5 sf of space in each waste room for recyclables and up to 350 sf for staging. Estimated 350 sf per 400 units (beginning in 2014). http://www.crainsnewyork.com/article/20121211/REAL_ESTATE/121219978
- (3)) All scenarios considered assumed that a new terminal facility will be built. The current terminal building occupies 17,760 sf and the truck access and bulk and recyclables material staging area occupies 24,218 sf, for a total occupied area of 41,979 sf. The new terminal building will require between 3,000 and 10,000 sf, depending on the complexity of the system, while the truck-maneuvering and bulk-staging area will require about 12,120 sf. Thus approximately 20,000 sf (half an acre) could be available for new use if the existing building were demolished or repurposed (rather than simply putting the new equipment inside the existing building), a new terminal building were constructed, and recyclables were handled by the pneumatic system. If recyclables continued to be handled manually, approximately the same amount of space would be available for re-purposing, since the additional outdoor area required for staging these materials would be roughly offset by the decreased space required for the terminal building.
- (4) Footprint of Upgrade-Only terminal: 2500; of Upgrade+Rec terminal: 4700; of Upgrade+Rec, +Comm+Litter terminal: 8300. Terminal areas calculated from floor plans Envac Resum new scenarios 2012 06 06.ppt.
- (5) Existing network map NY-002-000C existent js.pdf; 40 valves in use, 30 at the bottom of vertical chute rooms in residential buildings, 1 in school, Jerry Sorgente to Juliette Spertus 10/28/11
- (6) For existing residential building data, see Ref 5 Impact Calcs and Ref 6 bldg survey in Appendix A-1. For existing business data, see Ref 4-business calcs-redacted. For businesses refuse and recycling, space requirements are combined. SF for containers is doubled to account for access and maneuvering.
- (7) Total cost in Ref5, number of bins per building and cost per bin calculated in Ref6, Appendix A-2.
- (8) Assumes an annual salary of \$60.000 (with fringe) for property manager based on average listed on http://www.indeed.com/salary?q1=property+manager&l1=New+York%2C+NY
- (9) "storage and removal locations shall be provided at the rate of 2.9 cubic feet per #dwelling unit#" NYC Dept. of City Planning, Article II: Residence District Regulations Chapter 8 The Quality Housing Program, 28-23 Refuse Storage and Disposal, (2/2/11)
- (10) Total imputed labor hours for residential recycling 53 hours per week or 2756 hours per year, residential survey in Ref5 Appendix A-1. Current Imputed hours generated by dividing 2756 by total units and multiplying each buildings units by hours per unit.
- (11) Recycling bins only. Assume equipment will be replaced every 10 years, or 10% of total cost of bins for residential recycling. See Ref 5 Appendix A-1, for current equipment cost including vehicles and carts but not including bans
- (12) Equipment cost based on High Line supplies: Trash bags 225 cases per year @ \$56.08 per case of 50 (actual 2011 count). (Meeting with Mike Lampariello and Judith Simon of Friends of the High Line, 3-22-12.)
- (13) DSNY recyclables collection scenario: Taking bags of recyclables dropped off by tenants in their waste rooms to storage rooms, average 5 minutes per floor (assume .5 bag per floor) or 2.5 minutes, including elevator wait, putting them into 60-gal clear or blue bags, bringing to curb 1x week, guesstimating 60-gal clear and blue bags, 40 lbs/bag, 2 minutes to fill and tie each bag, 2 minutes for each bag, round-trip, to ferry to storage room, 1 minute for each bag to place and remove from storage room, 4 minutes for each bag to place on cart to take to curb, round-trip, =11.5 minutes/bag.
- (14) DSNY refuse collection scenario: Assume each existing gravity-fed chutes is retrofitted with stationary compactors. Assume 30 minutes per month or 6 hours per year maintenance at \$60/hour (machinist rate), and 1 hour per week cleaning by building managers. Waste is collected in 60 gal bags, 40 lbs/bag, 2 minutes to fill and tie each bag, 2 minutes for each bag, round-trip, to ferry to storage room, 1 minute for each bag to place and remove from storage room, 4 minutes for each bag to place on cart to take to curb, round-trip, = 9 minutes/bag.
- (15) Assume small compactors are half cost of NYCHA 8 cubic yard exterior compactors or \$20,000, with same monthly maintenance and cleaning requirements and same 15-year life. Ceasare Gentile, NYCHA to Miller 01/02/13
- (16) Assume each bag occupies same area as one 64 gallon tote, or 29" x 23" or approx 4 sf. See: http://www.usplastic.com/catalog/item.aspx?itemid=27384
- (17) See current operations col B for tons/day.
- (18) See Rent Table

	A	В	С	D	Е	F	G	Н	I
1	Table B-06. Pneumatic v	s. Manual Po	otentially Achievab	le Waste-Generator S	avings	(continu	ued)		
-	Manhattan Park(1)		-		Ĭ	+	Normalizing to		
	Apartments	Rent	Details	Floorplan	SF	\$/SF/M	Unfurnished	\$/SF/Y	Land
3						o			Rent/SF/Y(3)
4	1 BEDROOM	\$2,225	River / City View	Plan F floors 2-11	584.58	\$3.81	\$3.81		\$1.51
5	1 BEDROOM W/ DEN	\$2,595		Plan C & D floors 2-11	648	1 1 1	1		
6	2 BEDROOMS	\$2,995	River / City View	Plan J floors 3-22	660	1	\$4.54		
7	2 BEDROOM W/ DEN	\$3,695	Balcony	Plan H floors 3-22	864	\$4.28	\$4.28		
	3 BEDROOMS W/ DEN	\$4,795	Balcony		1457	\$3.29	\$3.29		
9	(2)	\$2,950	Furnished		950	\$3.11			
10			Furn or Unfurn	Avg/SF/Furnishd	1200	\$2.67	\$3.45		
11		\$3,600	Furnished	4.023447508	700	\$5.14			
12		\$3,600	Unfurnished	Avg/SF/Unfurnishd	850	\$4.24			
13		\$3,440	Furnished	3.450980392	900	\$3.82			
14						AVG	\$3.89	\$47	
15									
16	(1)http://www.manhattanpai	rk.com/availab	ilities, accessed 12-31	<u>-12</u>					
	(2)http://www.sublet.com/sp				<u> </u>	<u> </u>			
	(3) "On the First Ground Ren					.,	·		
-	increase to \$236,000 per ann								
	cumulatively increase by 10%								
	anniversary of the First Grou								
=	Expiration Date"), as provide			-					
-	on the first day following the			Master					
-	Cooperative Closing (or other								
	cooperative/condominium ow								ļ
	be payable as provided in Exl			r, the			<u></u>		
	Master Cooperative Closing (ļ	ļ			
	cooperative/condominium ow				ļ				
	Affordability Expiration Date,	the Ground re	ent shall be payable as		ļ	ļ	ļ		
	provided in Exhibit C-2."				ļ	ļ			
	http://rooseveltislander.blogs				<u> </u>	<u> </u>]	
-	https://docs.google.com/file/				xNZrWLV	WZd75m	J/edit?pli=1	1	
34	Area of Island House, land ar	nd property, ap	prox 355'x440' (Goog	le maps)					

	A	В	С	D	Е	F	G	Н	I	J	K	L
1	Table B	-7. Analysis of Recent Findings in Pneumatic Colle	ection Literature									
2												
3	(1)'	Cost (Euros/tonne)	Conventional	Pneumatic	Multiplier							
4		Helsinki Capex	33	343								
6		Helsinki Opex Helsinki Enviro Cost (mainly CO2eq)	40 0.51	71 1.29		}						
7		Total, Helsinki Base Case (5.3 tonnes/d)	0.51 74	415		ļ						ļ
8		Total, Helsinki Max Case (3.3 tonnes/d) Total	60				ļ			<u> </u>		<u> </u>
9		Total, Heisinki Pax Case (2212 tollies) a) Total				}				}		÷
10	(20)	Cost (\$/ton): Opex Including Debt Service and Dray										†
11		(w/o Env Cost)										1
12		High Line (11 tpd)	188	290								
13		Second Avenue Subway (19 tpd)	134	178	1.3							
15		Roosevelt Island Upgrade Only	223	371	1.7							ļ
16		Roosevelt Island Upgrade + Recycling	223	456		}				}		+
17		Roosevelt Island Upgrade + Recycling + Commercial + Litt	223	468						····	-	†
18												1
19	(17,18)	Cost Including Space Savings										
20					ļ							
21		Unananah. Giratad	Manual	D	Ratio, P/M							
23		Hammarby Sjostad Capex	Manual € 2,949,835	Pneumatic € 4,728,408								ļ
24		Opex	€ 271,696	€ 87,904								
25 26		Total/Y	€ 486,031	€ 431,415	0.89							÷
26	(21)	Capex	SEK 27,619,988	SEK 44,275,000								1
27		Opex	SEK 2,544,468	SEK 823,099								I
28	(21)	Total Annual @6% interest	SEK 4,551,030	SEK 4,039,630	0.89							
30		Sodra Station, Stockholm Capex Per Apartment	€ 1,259	€ 1,479	1.17							
31		Opex Per Apartment	€ 1,259 € 64	€ 1,479		}						-
		Space Cost/Y	€ 104	€ 18								ļ
32		Total/Y (Including Space Costs)	€ 207	€ 152								†
34					÷							
35		CO2eq (kg/tonne) (2)										I
36		manufacture(7)	1.86	20.74								J
37 38		collection + transport Total	16 17.86	35.66 56.4								ļ
39		lotal		pneu stationary	nneu mohile		mult mobile			}		-
40		Total(4,13,14,15)	7.9	47.3	44.3	6.0	5.6					÷
41		X / / / /										-
42					!						1	1
43		CO2 Equiv Units (3,8,9)	door-to-door	kiosks	pneumatic		multiplier v kiosks					1
44		fixed infrastructure	580	3245	10062	17.3	3.1					<u> </u>
45 46		mobile equipment, 0.01km mobile equipment, 5km	5220 9420	2655 6928		0.6 0.8	1.1 1.2			}		-
47		mobile equipment, 10km	13229	11507	15038		1.3			ļ		<u> </u>
48		mobile equipment, 20km	20134	17828			1.4					
49		mobile equipment, 30km	5220	24854	30563	5.9	1.2					1
50		total(10)	5800	5900		2.2	2.2					1
51		Cumulative Energy Demand(11)	470000	300000		0.7	1.1					
52 53		Collection % of total CO2eq(12)	10				1.4					ļ
54		Collection % of Cum. E Demand(12)	6	50	/4	12.3	1.5			}		
55		CO2equiv% from(3)			 	% of Infrastructure	CO2 From Pipes Alone					<u> </u>
56		Fixed Infrastructure		<u> </u>	77.4	0.68	,			<u> </u>		·
57		Pneumatic Transport			13.1							1
58		Truck Transport			9.5]						
59		{	ļ	}		}	ļ		g			i
60	}	Electricity Use (kwh/ metric ton) hypothetical system, Punkkinen et al. (22) (24)	m tons/year 2,000	m tons/day 5.5	length of pipe (1626		Low reported 50	Baseline used 95	Baseline kwh/y 190,000	Sensitivity high 12	Sensitivity lo	
62	ļ	hypothetical modeled system, Jackson (23)	2,000 35,849	98.2			NA SU	95 0.7	190,000	NA	NA 70	·
63		mypourceas modered system, successi (25)	33,043	50.2	2000			0.7		····		·
64		Short tons per metric ton:	1.10231						203			
65					<u> </u>							1
66			manual, hrs/wk	manual, dba	pneu hrs/wk		multiple hrs	multiple dba				1
67		noise reduction (19)	10.8	81.5	4	63.5	0.37	0.78				ļ
68		{	!	}	1	1	1			}	1	:

	A	В	С	D	Е	F	G	Н	I	J	K	L
69		Transfer/Baling	transfer stations	baling	:						1	1
70		CO2-eq kg/tonne(4)	2.248	0.086								
71												
72				flat-fee hseh kg/yr	reduction				7	}		1
73		SAYT Reduction Effect(16)	592	876	0.32				!			
74												
75			-						1			
76		(1) Teerioja										
77		(2) Punkkinen		}					7	}		1
78		(3) Iriarte										
79		(4) Eisted			;						;	-
80		(5) 5.3 tonnes/day	-						1			
81		(6) 21.2 tonnes/day										
82		(7) conventional includes only "manufacture of waste cont									!	
83		(8) Units are per 1500 "tons" (assumed to be long tons), a	and vary by category (kg/1500t for fixed inf	rastructure, GJ f	or mobile equipmer	it)					
84		(9) Kms for mobile equipment refer to distance from the e	nd of the collection ro	ute to the first dump								
85		(10) "kg CO2 equiv. 100 years/FU [1500 tons]"	-						1			
86		(11) MJ/1500 tons										
87			***************************************		*		***************************************			***************************************		
88		(12) % of the CO2 Equiv. or Cumulative Energy Demand p	roduced by a system i	n the collection phase	e (i.e., excluding	transport from the	end of the collection rou	ute to the first dur	np site)			
89		(13) Avg refuse from city center	9.6		;						;	
90		(14) Avg refuse from apt blocks	5.2						1			
91		(15) Avg for paper from apt blocks	9									
92		(16)Kogler, p. 61 (European averages)		}								
93		(17)Kogler, 2,095 apartments, 3 fractions, 52 collection lo	cations, 6% cost of car	pital. 30-vr lifespan. s	pace savings of	1.366 sa meters, w	ith annual rental income	for around floor	space of 160 eur/	sa m/vr. p. 104 (fron	SWECO	
94		VIAK AB, 2004, "Hammarby SjostadVastra Sjostadenco						9				
96		(18)Kooler Sodra Station Stockholm n 106 from BoDAP	"City planning with a	and without vacuum w	aste handling "	1999	·	T	1	1	1	1
97		(19)Kogler, Hammarby Sjostad, p. 111, from S. Axelsson,	"Economic Analysis an	d Environmental Asse	essmentHamm	arby SiostadSumr	narv." 2004	†		-		
98		(20) 4.75% interest, 34-year bond		}	1			-	÷		;	1
99		(21) SWECO VIAK AB, 3-23-05, Hammarby Sjostad	-	}	÷	}						
100			cubic meters of nvc o	ontainer, 20'x12'x8.5	: dsnv calls 62c	v. http://www.nvc.o	ov/html/dsny/download	ds/pdf/swmp/swm	p/Final360App/NS	Shore360/vol1/04.pd	f. accessed 1-	-8-13
101					<u> </u>		<u> </u>		<u> </u>		·	ī
102		1										
103		(22) "Transfer of waste from the waste inlets to the waste	terminal would take n	lace by means of air f	low Since no m	easured values for a	electricity consumption (due to suction wer	e available we us	sed an average value	95	
104		kWh/waste tonne in our baseline calculations. This value w										
105		estimates provided by different system suppliers varied wi					kirii, irabte toilile)i pi	7.5	uc Decc.o 2	ione, and electricity e	0.1.0d1.1.pc.01.1	
106		affect energy consumption. Furthermore, the compiled ave					suctions would be sche	eduled or sensors	would indicate the	e filling rate. For the	baseline	
107		calculations (results given in Section 3.1), we used an ene										
108		tonne and 120 kWh/waste tonne in the sensitivity analysis					., ,	,	,			
109		(23) Jackson generates a kwh per day rate by modeling er				. 26. This waste vol	ume is highly unrealistic		!	· [}	
110		(24) Teerioja 2012, p. 5.		}			j , ,		Ť	1		Ť
		, , ,					·		·	<u> </u>	·	

	A	В	С	D	E	F	G	Н
1	Table B-08. Pneumatic vs Manual Cost Calculation							
2		Cost of Managed Port	tion of Each Pne	umatic Scenario		Manual	Cost of Managed Pol	
3		No-Action: Existing AVAC	Upgrade	Upgrade+ Recycling	Upgrade+ Recycl'g+ Comm'l+ Litter	Manual (f)	Metering (j)	Upgrade + Recycling w Waste Metering (j)
4	Total TPY (a)	2,675	2,675	3,854	5,672	3,891	2,675	3,854
5	Capex (c)(i)	NA NA	\$6,459,331	\$16,987,777	\$26,265,050	\$1,381,319	\$7,403,331	\$17,931,777
7	Capex/T Opex/Yr w/Replacement But W/O Debt Service or Dray (b)(k)	\$2,461,548	\$2,414 \$381,051	\$4,407 \$566,573	\$4,631 \$871,732	\$355 \$817,089	\$2,767 \$381,051	\$4,652 \$566,573
	Delta Opex w/o DS v. Manual	(\$1,644,459)	\$436,038	\$250,516	(\$54,643)	\$617,009	\$436,038	\$250,516
9	Normalized Delta Opex w/oDS v Manual	(\$1,899,703)	(\$180,794)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mariana		(\$180,794)	
	Position ((+=/0==/, 0=/	(4-00), 5.7	(4-1-//	(45-5, 155)		(4-00,70.7	
10	Opex/Ton W/O Debt Service(d)	\$920	\$142	\$147	\$154	\$210	\$142	\$147
11	Multiple Opex/Ton W/O Debt Service v. Manual	4.38	0.68	0.70	0.73	NA	0.68	0.70
12	Debt Service/Year	NA	\$382,088	\$1,004,876	\$1,553,653	\$97,117	\$437,928	\$1,060,716
	Debt Service/Ton	NA	\$143	\$261	\$274	\$25	\$164	\$275
	Opex/Year WITH Debt Service	\$2,461,548	\$763,139	\$1,571,449	\$2,425,385	\$914,206	\$818,979	\$1,627,289
	Opex/Ton WITH Debt Service	NA	\$285	\$408	\$428	\$235	\$306	\$422
	Multiple, Opex/Ton WITH Debt Service, v. Manual(n) Dray Costs (e)	3.9	1.2		1.82	NA.		
1/	Dray Costs (e)	\$134,708	\$120,454	\$38,024	\$50,074		\$120,454	\$38,024
18	Total Opex w/ DS and Dray (o)	\$2,596,256	\$883,593	\$1,609,473	\$2,475,459		\$939,433	\$1,665,314
	Opex w/ Dray w/o DS	\$2,596,256	\$501,505	\$604,597	\$921,805	\$817,089	\$501,505	\$604,597
	Normalized Opex Savings w/Dray w/oDS v Manual		\$60,340	\$204,827	\$269,336		\$60,340	\$204,827
	Multiple, Net Present Value v Manual	NA	4.8	8.3	9.1	1.0	5.7	
22	Ann. Externality Benefits Req. to Eq. NPV Costs v Manual (Normalized Tons) Multiple, NPV AVAC Sensitivity v. AVAC	NA	\$255,000	\$700,000	\$1,140,000	NA :	\$310,000	\$755,000
24	Multiple, NEV AVAC Sensitivity V. AVAC		\$330		·		·	
	Debt Service Calculation		Ψ330	`			}	
26	Monthly debt service calculated using http://bretwhissel.net/cqi-bin/amortize			÷	 		÷	
27	, , , , , , , , , , , ,	No-Action I	U	UR	URCL	Manual revised	U+metering	UR+metering
28	сарех	NA	\$6,459,331	\$16,987,777	\$26,265,050	\$1,381,319	\$7,403,331	\$17,931,777
29	Monthly DS	NA	\$31,841	\$83,740	\$129,471	\$8,093.07	\$36,494	\$88,393
30	Payments/Yr	NA	12	12	12	12	. 12	12
31	Annual DS	NA	\$382,088	\$1,004,876	\$1,553,653	\$97,117	\$437,928	\$1,060,716
32	Notes							
33	(a) The No-AVAC cost factor (\$210)t) does not include the presumed separate RIOC litter collection cost. Also, in real life, the absence of an AVAC system wo							
34	reduced by this commercial tonnage (4.68 tpd).							
35	(b) Operating and maintenance, including ongoing replacement of components the Manual (No-AVAC) case, opex includes amortization of capital costs (garac							
36	equipment replacement in the current annual opex cost maintenance costs for					components do N	oave an maemille	c. to reflect
37	(c) No-AVAC capex from mortgage calculator link above based on per ton debi				,			
38 39	(d) AVAC Opex based on Envac calculation 1/30/13, as revised by UTRC for N 2013. For calculation of conventional costs, see conventional cost worksheet.	YC actual personnel a	nd electricity ra	tes, see worksheets	U, UR, URCL. No-AVAC	Opex is based on RI	wtd avg collection co	sts w/o debt service
40	(e) RI RORO.xlsx							
-	(f) Manual (No-AVAC) Opex/ton and Debt service/ton is based on RI wtd avg o	collection costs 2005	elevated to 201	3, for calculation see	e conventional cost work	sheet.		
42	(g)This is a hypothetical exercise to compare relative costs for all wastes gene non-AVACed portions (rather than that those portions were handled by the ind	•				assuming that conv	entional (DSNY) colle	ction were used for the
44	(h) Pipe installation cost see Mateu to Miller, 2-15-12, 8.55 am, with attached	· · · · · · · · · · · · · · · · · · ·	.		de p. coerrej.	1		
44	(II) ripe ilistaliation cost see mateu to milier, 2-15-12, 6.55 am, with attached	KOT KT AM 12 IGD 50	12.XISX, KUI(Z)	, KUI (Z)!DIO.			1	

	A	В	С	D	E	F	G	Н
(i) Total equipment cost. Rello	to Miller 01/14/13 and for UR see Rello to Miller	01/18/13						
(j) Waste metering: include a	card reader in the inlet plus an inlet door with v	olume limit. An upgi	rade in the syste	m control in the coll	ection station of around	\$ 50,000 and an acc	ess control card for the	inlet door (\$2,00
7 per door). Rello to Miller 01/1	4/13; There are roughly 447 inlet doors in existing	ng and planned RI b	uildings. See SF	worksheet. Or an ad	Iditional capex of \$944,0	00 to add card acces	s to each of these inle	S.
Additional capex for metering		\$944,000		-	:	:		
	labor, electricity and minor repair costs, Brautiga	m to Miller, 10-6-11	, FY10:					
50					2011 Actual	2013\$	Projected tons	
51				DSNY labor				
52				DSNY electricity	·	4	\$643,334	
53			Othe	DSNY minor repair	\$12,000	\$12,386	\$15,653	
54				total DSNY	\$1,572,232	\$1,622,746	\$2,050,815	
55				DSNY Opex/T			\$767	
6				RIOC 3-yr av:	\$325,000	\$325,000	\$410,733	
57				RIOC Opex/2011 T:	\$154	¦ 	\$154	
58		Total Ope	ex/Yr w/Replacei	ment But W/O dray:	\$1,897,232	\$1,947,746	2,461,548	
FO.				Total Opex w o	+000		****	
59				dray /2011 T	\$896		\$920	
60				DSNY%				
51				RIOC%	17%			
Percentage increase in ton		126%	.,	ļ	ļ	ļ		
(I) RIOC AVAC annual cost FY	2009-11 for equipment maintenance, source: Sin on of recent building improvements, source Chiro	gn to Miller 12/14/1	.1; 3-yr average	FY 2009 FY 2010	\$522,390	ļ		
	to about \$325K per year. This takes into account			FY 2010 FY 2011	7			
65 capital repairs for AVAC come 66 repairs.":	to about \$325K per year. This takes into account	. building, machiner	y and piping	2011-13 Average:	\$325,000		}	
				2011-13 Average:	\$325,000		}	
67								
	use only, not including MGP and OCC:			\$1,924,888	\$890.41	ļ		
69				ļ		ļ		
	is no debt service, this is simply total cost/ton			ļ		{ 		
71					2013\$			
(o) In all scenarios except UR	CL and Manual, RIOC collects street litter bins wit	th 10 cv rear-loader.	Cost is not					
	or reference cost is estimated to be 49,000 per y	,						
sale price, see								
http://mypompanobeach.org/	pages/department_directory/general_services/pu	urchasing_departme	nt/old_bids/201					
72 2/pdfs/t/t41/T-41-12-tab.pdf,				\$100,000	\$101,385			
73 Life assumed to be 7 yrs like	DSNY rear-loaders, capex annualized:			\$14,285.71		<u> </u>		
	25 of DSNY rear-loader maint., see Brautigam to	Miller 06/30/13:		\$24,763		[
75 RIOC annual maintenance:				\$6,190.75	\$6,406		[
	nours*7 days* Douglass to Miller 01/20/12. RIOC				1 			
	00, see seethroughny.net. Assume 40 hours x 52			\$39,483	\$46,798			
	e for parks and bins not included in pneumatic sc	enario. 2/3 of \$39,4	83=	\$26,322	\$31,199			
79				ļ	.=	; 	}	
80 Total RIOC annual capex and	1			<u> </u>	\$52,089			
Total RIOC litter tons collected				ļ	36.50	i		
Total RIOC Litter collection pe				ļ	\$1,427	ļ		
83 (p)2011 estimated actual con	mercial waste fees paid to private carters	:		1	\$50,000	:	1	

	Α	В	С	D	Е	F	G
1	Table B-09. El	ectricity Cost Calculation					
2							
3	AVAC Actual Elec	tricity Use(1)(3)					
4		BTUs	kw	kwh	\$		
5	FY2011	3318		972000	\$499,186		
6	FY2010	3345		980000	\$487,221		
7	Avg(1)	3332	1087	976000	\$493,204		
8							
9	Cost Factors	DSNY Actual, Rate as of April, 2012(2)	2013\$				
10	kwh@	\$0.06	\$0.06				
11	kw@	\$23.12	\$23.38			<u> </u>	
12							
13	Electricity Use for	r Alternative Scenarios (4)			Total Annual El	ec Cost, Actual	Rates (5)
14		Upgrade	Upg+Rcy	URCL	Upg	UR	URCL
15	KWH/year	193,974	548,935	837,017	{ ¹		\$51,825
16	kw	331	331	662	\$91,876	\$91,876	\$183,751
17	Total Electricity C	Cost			\$103,886	\$125,864	\$235,577
18							
$\overline{}$	(1)NYC DCAS, "C	ore Report, Facility-Level Energy Cost, Usage, ar	nd CO2e Emi	ssions," 4-20	11.		
20							
	(2) Donald Porter	r, DSNY Bureau of Building Management, to Stev	en Brautigan	n, DSNY Asst	Comr., Environ	mental Affairs,	2-11-13
	(3) Brautigam to	Miller, 1-28-13					
	(4) Ricardo Rello	, Envac, to Spertus and Miller, 1-29-13					
		hose maximum monthly demand is below 1,500			ne of Day servic	e.	
25	http://www.cone	d.com/documents/PSC12-PASNY/PASNYPSC12.p	df, accessed	2-13-13.			

	A	В	С	D	E	F	G	Н
1	Table B-10. Pn	eumatic Sy	stem Operating Cost Cal	culation				
2	Upgrade-Only			PROJECT NAME		ROOSVELT ISLAND (op1)		
3	CURRENCY REF			PLACEMENT:		NEW YORK		
4	\$	ł		Envac DATE:	1/30/	13 UTRC Date:	2/14/13	
5	7							
6	PERSONNEL:							
7	<u>i EKOOMILE.</u>		DESCRIPTION		QUANT.	COST	TOTAL	
8	DIDECT OSM	PERSONNEL	DESCRIPTION		QUAIVI.	2031	IOIAL	
9	DIRECT OWN	PERSONNEL				\$150.030.53		
			OPERATOR O&M (a)		1.20	\$150,039.52	180,047.42	
10		UNIFORMS						
11			UNIFORMS	Ea.	2.00	457.42	914.83	
12	Me	OBILE PHONE						
13			TELEPHONE	P/A	1.00	228.71	228.71	
14		TOTAL:					181,190.97	
15								
16	VEHICLES						ľ	
17			DESCRIPTION	UNIT	QUANT.	COST	TOTAL	
18	MAINTI	ENANCE CARS						
19			OPERATOR VAN	ud	1.00	10,344.66	10,344.66	
20		TOTAL:					10,344.66	
21 22	SPARE PARTS							
23	SPAKE PAKIS		DESCRIPTION	UNIT	QUANT.	COST	TOTAL	
24		SPARE PARTS	DESCRIFTION	ONT	QUAIVI.	6031	IOIAL	
25		TERMINAL				1.00		
26			EXHAUSTERS	P/A	1.00	4,740.95	4,740.95	
27			CONTAINER	P/A	1.00	759.83	759.83	
28			CYCLONE	P/A	1.00	992.67	992.67	
29	•		COMPACTOR	P/A	1.00	789.76	789.76	
30			CONTAINERS MOVE	P/A	1.00	3,241.76	3,241.76	
31			CONTROL SYSTEM	P/A	2.00	335.22	670.45	
32			SECTION IN VALVE	P/A	1.00	151.72	151.72	
33			COMPRESSOR	P/A	1.00	146.53	146.53	
34		FILTERS				1.00		
35			DUST FILTERS	P/A	1.00	2,908.91	2,908.91	
36		<u> </u>	CARBON	P/A	1.00	4,395.70	4,395.70	
37	PI	PE NETWORK				1.00		
38			DUMP VALVES	P/A	1.00	2,746.18	2,746.18	
39			TRANSPORT VALVES	P/A	1.00	575.27	575.27	
40			SYSTEM DEVICE	P/A	1.00	453.64	453.64	
41 42		TOTAL:					22,573.36	
	CURRITEC						-	
43 44	SUPPLIES		DESCRIPTION	UNIT	QUANT.	COST	TOTAL	
45		MATERIAL	DESCRIPTION	OINTI	QUANT.	COST	IUIAL	
TJ		MATERIAL	1	1				

	А	В	С	D	E	F	G	Н
46			CLEANING GOODS	P/A	1.00	1,268.29	1,268.29	
47			TOOLS	P/A	1.00	1,346.25	1,346.25	
48			OFICCE MATERIAL	P/A	1.00	133.73	133.73	
49		TOTAL:					2,748.27	
50								
	ELECTRIC POWER							
52			DESCRIPTION	UNIT	QUANT.	COST	TOTAL	
53	ENERGY SU	IPPLY (b,c,d)			100 074 100550001	0.060		
54			CONSUMPTION (Collection+Aux)	Kwh	193,974.139552321	0.062	12,010.23	
55			Kw CONTRACT	Kw	331.155	\$23.38	92,908.85	
56		TOTAL:					104,919.08	
57								
	MISC.							
59			DESCRIPTION	UNIT	QUANT.	COST	TOTAL	
60			TELEPHONE	P/A	1.00	1,477.81	1,477.81	
61			WATER	P/A	1.00	2,005.60	2,005.60	
62	,	TOTAL:					3,483.41	
63								
	EQUIPMENT REPLACE	CEMENT	D = 0.00 + 0.1					
65	COMPONENT DEDI		DESCRIPTION	UNIT	QUANT.	COST	TOTAL	
	COMPONENT REPLA	IT UPDATING	TEDAMANA	B/A	2.00			
67 68			TERMINAL NET	P/A	2.00			
69			EXTERNAL NET	P/A	1.00			4
	DEDCONNEL	TOTAL:		101 100 07	T D4770		55,727	4
	PERSONNEL VEHICLES			181,190.97	RATIO		PER DWELLING	F 050
				10,344.66		DWELLING EQ.		5,059
	SPARE PARTS			22,573.36	DATTO	RATIO COST/DWE.EC		75.31
	SUPPLIES			2,748.27	RATIO	3	PER TON	2.675
	ELECTRIC POWER			104,919.08	~	TONS		2,675
_	MISC			3,483.41	D.4.77.0	RATIO COST/TON	DED TON	142.42
	EQUIPMENT UPDAT	ING		55,726.78	RATIO	(PER TON	2.675
	TOTAL			380,986.52		TONS		2,675
78	_					KWH		193,974
	Energy calc.			0.1		RATIO KWH/TON		72.51
	Total collection time			9 hours				-
	Average consumption		247.50 13%	0 Kwh			ļ	
-0.0	Reduction Total consumption		193,974.14				 	
	Notes:		155,574.1	* KWII	_			
		DSNY to Miller	r 10/06/11. There are currently 8 full	time employees w	ith the titles and nav rates	shown in this note. Enva	lists operator posit	ions The
			: Senior Stationary Engineer base sa					
			t base salary \$75,940, fringe \$32,655				.5	, = = = , = = ,
			Level Energy Cost, Usage, and CO2e I					1
			uilding Management, to Steven Brauti			s, 2-11-13	†	1
	(d) Brautigam to Mille			=			<u> </u>	*************************************

	A B	С	D	E	F	G
1	Upgrade + Recycling					
2	PROJECT NAME	ROOSVELT ISLAND (op3)				
3	PLACEMENT:	NEW YORK				
4	Envac DATE: 1/30	/13 UTRC Date:	2/14/13		\$	
5	MANAGED SERVICE COST					
6	PERSONNEL:					
7		DESCRIPTION		QUANT.	COST	TOTAL
8	DIRECT O&M PERSONN	EL EL				
9		OPERATOR O&M		1.50	150,039.52	225,059.28
10	UNIFOR	i				
11		UNIFORMS	Ea.	2.00	457.42	914.83
12	MOBILE PHO					
13		TELEPHONE	P/A	1.00	228.71	228.71
14	ТОТА	AL:				226,202.82
15	VEHICLES					
16		DESCRIPTION	UNIT	QUANT.	COST	TOTAL
17	MAINTENANCE CA				40.000.000	
18		OPERATOR VAN	Ea.	1.00	10,344.66	10,344.66
19	тота	AL:				10,344.66
20	SPARE PARTS	DECODIDE			0007	
21 22		DESCRIPTION	UNIT	QUANT.	COST	TOTAL
	SPARE PAR				100	
23	TERMIN				1.00	
24		EXHAUSTERS	P/A	1.00	5,781.50	5,781.50
25 26		CONTAINER	P/A	1.00	1,519.65	1,519.65
27		CYCLONE COMPACTOR	P/A P/A	1.00 1.00	2,978.01 3,319.21	2,978.01 3,319.21
28		CONTAINERS MOVE	P/A	1.00	3,241.76	3,319.21
29		CONTROL SYSTEM	P/A	2.00	335.22	670.45
30		SECTION IN VALVE	P/A	1.00	455.15	455.15
31		COMPRESSOR	P/A	1.00	418.20	418.20
32	FILTE			····	1.00	
33		DUST FILTERS	P/A	1.00	2,908.91	2,908.91
34		CARBON	P/A	1.00	13,485.83	13,485.83
35	PIPE NETWO				1.00	-,
36		DUMP VALVES	P/A	1.00	2,746.18	2,746.18
37	1	TRANSPORT VALVES	P/A	1.00	575.27	575.27
38		SYSTEM DEVICE	P/A	1.00	1,575.80	1,575.80
39	ТОТ	AL:				39,675.91
1	SUPPLIES					
41		DESCRIPTION	UNIT	QUANT.	COST	TOTAL
42	MATER	AL				
43		CLEANING GOODS	P/A	1.00	1,268.29	1,268.29
44		TOOLS	P/A	1.00	1,346.25	1,346.25
45		OFFICE SUPPLIES	P/A	1.00	133.73	133.73
46	ТОТА	AL:				2,748.27

	А	В	С	D	Е	F	G
47	ELECTRIC POWER						
48			DESCRIPTION	UNIT	QUANT.	COST	TOTAL
49		ENERGY SUPPLY					
50			CONSUMPTION (Collection+Aux)	Kwh	548,935.240453264	0.06	33,988.24
51			Kw CONTRACT	Kw	331.155	23.38	92,908.85
52		TOTAL:					126,897.09
	MISC.						
54			DESCRIPTION	UNIT	QUANT.	COST	TOTAL
55			TELEPHONE	P/A	1.00	1,477.81	1,477.81
56			WATER	P/A	1.00	2,005.60	2,005.60
57		TOTAL:					3,483.41
58	EQUIPMENT REPLACEMEN	<u>IT</u>					
59			DESCRIPTION	UNIT	QUANT.	COST	TOTAL
60		COMPONENT REF					
61			TERMINAL	P/A	2.00		
62			EXTERNAL NET	P/A	1.00		
63		TOTAL:					157,162.06
64					RATIO		\$ PER DWELLING
65						DWELLING EQ.	5,059
	PERSONNEL			226,202.82		RATIO COST/DWE.EQ.	112
-	VEHICLES			10,344.66	RATIO		\$ PER TON
68	SPARE PARTS			39,675.91		TONS	3,854
69	SUPPLIES			2,748.27		RATIO COST/TON	147
70	ELECTRIC POWER			126,897.09	RATIO	Kv	h PER TON
	OTHERS			3,483.41		TONS	3,854
72	EQUIPMENT UPDATING			157,162.06		KWH	548,935
73	TOTAL (without VAT)			566,514.22		RATIO KWH/TON	142
	Energy calc.						
75	Total collection time			7.23 horas			
76	Average consumption			247.50 Kwh			
	Reduction			13%			
78	Total consuption		548	,935.24 Kwh			

	A	В	С	D	Е	F	G
1	Upgrade, Recycling, Commer	cial & Litter					
2	PROJECT NAME		ROOSVELT ISLAND (op4) c1				
3	PLACEMENT:		NEW YORK				
4	Envac DATE:	1/30/13	UTRC Date:	2/14/13		\$	
5							
6	PERSONNEL:		{				
7			DESCRIPTION		QUANT.	COST	TOTAL
8	DIRECT	O&M PERSONNEL					
9			OPERATOR O&M		2.00	150,039.52	300,079.04
10		UNIFORMS					
11			UNIFORMS	Ea.	4.00	457.42	1,829.67
12		MOBILE PHONE					
13		<u></u>	TELEPHONE	P/A	2.00	228.71	457.42
14		TOTAL:					302,366.12
15	VEHICLES						
16			DESCRIPTION	UNIT	QUANT.	COST	TOTAL
17	MA	INTENANCE CARS					
18			OPERATOR VAN	Ea.	1.00	10,344.66	10,344.66
19		TOTAL:					10,344.66
20	SPARE PARTS						
21			DESCRIPTION	UNIT	QUANT.	COST	TOTAL
22		SPARE PARTS					
23		TERMINAL				2.00	
24			EXHAUSTERS	P/A	2.00	5,238.31	10,476.62
25			CONTAINER	P/A	2.00	1,519.65	3,039.30
26			CYCLONE	P/A	2.00	2,978.01	5,956.03
27			COMPACTOR	P/A	2.00	2,830.36	5,660.72
28			CONTAINER MOVER	P/A	2.00	3,241.76	6,483.51
29			CONTROL SYSTEM	P/A	4.00	335.22	1,340.89
30			SECTION IN VALVE	P/A	2.00	455.15	910.30
31			COMPRESSOR	P/A	2.00	279.16	558.31
32		FILTERS				1.00	
33			DUST FILTERS	P/A	4.00	2,908.91	11,635.62
34			CARBON	P/A	2.00	8,842.64	17,685.27
35		NET				1.00	
36			DUMP VALVES	P/A	2.00	2,746.18	5,492.36
37			TRANSPORT VALVES	P/A	2.00	575.27	1,150.54
38			SYSTEM DEVICE	P/A	2.00	978.90	1,957.81
39		TOTAL:					72,347.30
40	SUPPLIES						
41			DESCRIPTION	UNIT	QUANT.	COST	TOTAL
42		MATERIAL	{				
43			CLEANING GOODS	P/A	1.00	1,594.20	1,594.20

A	В	С	D	E	F	G
44		TOOLS	P/A	1.00	1,445.36	1,445.36
45		OFFICE SUPPLIES	P/A	1.00	168.09	168.09
46	TOTAL					3,207.66
47 ELECTRIC POWER						
48		DESCRIPTION	UNIT	QUANT.	COST	TOTAL
49	ENERGY SUPPLY					
50		CONSUMPTION (Collection+Aux)	Kwh	837,017.040000000	0.06	51,825.31
51		Kw CONTRACT	Kw	662.315	23.38	185,819.10
52	TOTAL					237,644.40
53 <u>міsс.</u>						
54		DESCRIPTION	UNIT	QUANT.	COST	TOTAL
55		TELEPHONE	P/A	1.00	1,477.81	1,477.81
56		WATER	P/A	1.00	2,005.60	2,005.60
57	TOTAL					3,483.41
58 EQUIPMENT REPLACEMEN	<u>T</u>					
59 composition	IT BEBL A SEMENT	DESCRIPTION	UNIT	QUANT.	COST	TOTAL
60 COMPONEN	IT REPLACEMENT	TERMINAL	P/A	0.00		
62		3	P/A P/A	2.00		
63	TOTAL	EXTERNAL NETWORK	P/A	1.00		0.40.000.00
64	TOTAL					242,322.66
65 PERSONNEL	202 266 42	RATIO		\$ PER DWELLING		
66 VEHICLES	302,366.12	RATIO	DWELLING EQ		6,359	
67 SPARE PARTS	10,344.66 72,347.30		RATIO COST/I		137.08	
		DATIO			137.00	
	3,207.66	RATIO		\$ PER TON	5.070	
69 ELECTRIC POWER	237,644.40		TONS		5,672	
70 OTHERS	3,483.41		RATIO COST/		153.69	,
71 EQUIPMENT UPDATING	242,322.66	RATIO		h PER TON		
72 TOTAL (without VAT)	871,716.21		TONS		5,672	
73			KWH		837,017	
74			RATIO KWH/T		147.57	
75 Energy comsuption Terminal 1			Energy comsupt			
76 Total collection time		horas	Total collection			horas
77 Average consumption	247.50		Average consu	mption	247.50	Kwh
78 Reduction	13%		Reduction		13%	
79 Total consumption	410,138		Total consumpt	tion	426,879	

	I	J	K	L	М	N	0	Р	Q
5	Table B-10A S	ensitivity Analys	is: Effect of La	bor & Electricit	y on Operating Co	st Calcula	tion, Upgra	de Only	
6									
7	Labor (personr	el requirements x	3)						
8				COST	ΓΟΤΑL				
9	OPERATOR O&M	(a)	3.6	\$150,039.52	540,142.27				
10									
11	UNIFORMS		6.0	457.42	2,744.50				
12	-							-	-
13	TELEPHONE		3.0	228.71	686.13		ļ		
14	TOTAL:		+		543,572.90		<u> </u>		
15	Cost Increase v.	projected:			362,381.93				
16	Total Opex w Rep	placement at 3x labo	or:		743,368.46				
17	Total Opex/t:				278				
18									
19 20	Electricity			1200/	1500/				
					150% kwh				
21			kwh/t	87	109				
22			kwh/y	232,768.97	290,961.21		ļ		
23			Cost per kwh	0.062	0.062		ļ		
24			Total cost kwh		18,015.35		<u>.</u>		
25			Total Cost KW ('	92,908.85				
26			Total	107,321.13	110,924.20				
27		Total Opex	w/ replacement	488,307.65	491,910.72				
28			Total Opex/t	183	184				
29									
30									
31	3x labor 150% k	wh Total Opex w/ re	placement		749,373.57				
32					280				

	I	J	K	L	М	N
4	Table B-10B Sens	itivitv Analvsis	: Effect of Lab	or & Electricity	on Operating	
5	Cost Calculation			-		
6	Labor (personnel r					
7		QUANT.	COST	TOTAL		
8						
9	OPERATOR O&M	6	150,039.52	900,237.12		
10						
11	UNIFORMS	12	457.42	5,489.00		
12						
13	TELEPHONE	6	228.71			
14	TOTAL:			907,098.37		
15	Cost Increase v. proj			604,732.25		
16	Total Opex w Replace	ement at 3x labor:		\$1,476,448		
17	Total Opex/t:			\$260		
18						
19	Electricity					
20			120% KWH	150% KWH		
21	Kwh/y		1,004,420	1,255,526		
22	Cost per kwh		\$0.06	\$0.06		
23	Total cost of kwh	<u> </u>	\$62,190	\$77,738		
24	Cost of KW (constant	:)	\$185,819	\$185,819		
25	Total		\$248,009	\$263,557		
26	Cost Increase v. proj	ected:	\$10,365			
27	Total Opex w/ replace	ement	\$882,081	\$897,629		
28	Total Opex/t:		\$156	\$158		
29						
30	3x labor 150% kwh T	otal Opex w/ repl	acement	\$1,502,361		
31				\$265		

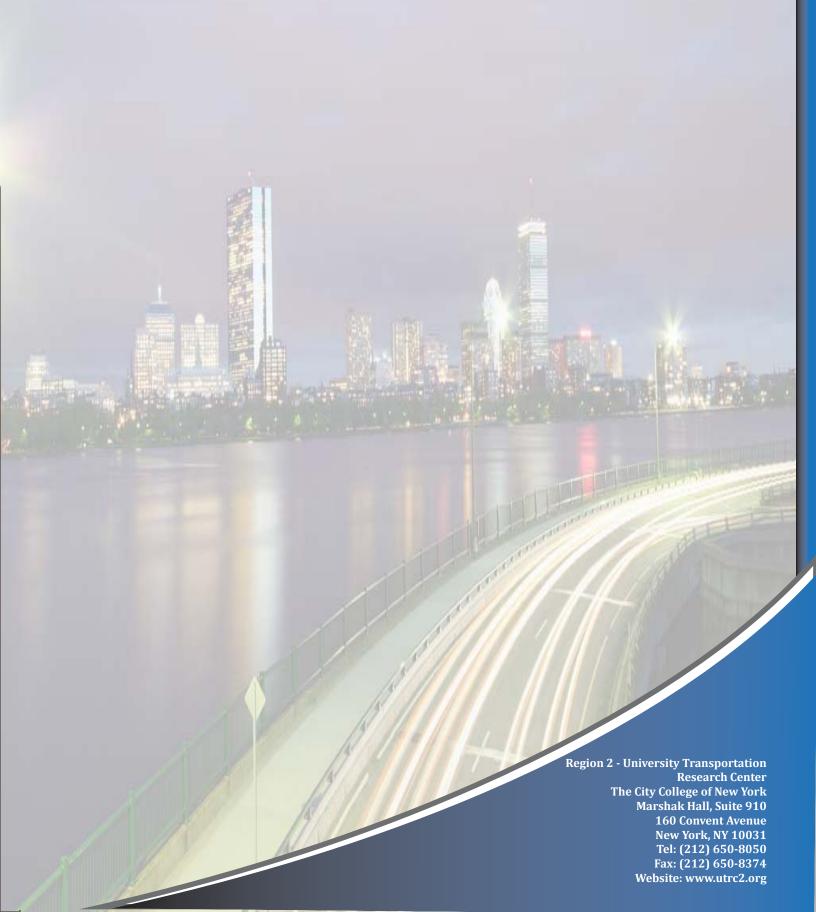
	А	В	С		D	Е	F
1	Table B-11. Pi	neumatic v. M	anual Net Prese	ent	Value of De	bt Service Cald	ulation
2	3% Discount Rate						
3	No-AVAC v U	U	No-AVAC v UR	UR		No-AVAC v URCL	URCL
4	3.000%	3.000%	3.000%		3.000%	3.000%	<u> </u>
5	(949,818)	(6,459,331)	(1,368,361)		(16,987,777)	(2,013,667)	(26,265,050)
6	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
7	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
8	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
9	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
10	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
11	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
12	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
13	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
14	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
15	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
16	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
17	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
18	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
19	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
20	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
21	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
22	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
23	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
24	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
25	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
26	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
27	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
28	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
29	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
30	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
31	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	-1,284,318
32	(66,779)		·	÷	(800,049)	(141,576)	<u> </u>
33	(66,779)	\$ (321,748		÷	(800,049)	(141,576)	4
34	(66,779)	\$ (321,748	(96,206)	\$	(800,049)	(141,576)	······
35	(66,779)	·	·	:	(800,049)	(141,576)	.,
36	(66,779)		(96,206)	\$	(800,049)	(141,576)	-1,284,318
37	(66,779)	ļ			(800,049)	(141,576)	·
38	(66,779)	·		÷	(800,049)	(141,576)	·
39	(66,779)			\$	(800,049)	(141,576)	·
40	(1,411,168)	(6,799,128)			(16,906,510)	(2,991,753)	÷
41	Differential	(5,387,960)		ļ	(15,495,342)		-25,728,821
42	Multiplier	4.8	·i		8.3		9.1
43	Manual capex and o			l		<u> </u>	<u> </u>
44	1		tic scenarios includes			ex w/o debt service	/ manual
45			ns based on NYC Wate				
46			W_2013_AA_Adj_Rat	e.pd	f, accessed 12-1	9-1 <u>2</u>	
47	p1: term, latest nyo			l			<u></u>
48							neet for raw numbers
49							ansportation investme
50	1-2012, http://www	v.dot.gov/sites/dot.d	dev/files/docs/TIGER_	_BCA	_RESOURCE_GU	IDE.pdf, accessed 3-	-19-13.

	G	Н	I	J	K	L
1						
2			255,000	700,000	1,140,000	310,000
3	U+metering	UR+metering	U Externality	UR Ext	URCL Ext \	J+m Ext
4	3.000%	3.000%	3.000%	3.000%	3.000%	3.000%
5	(7,403,331)	(17,931,777)	(6,459,331)	(16,987,777)	(26,265,050)	(7,403,331)
6	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
7	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
8	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
9	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
10	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
11	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
12	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
13	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
14	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
15	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
16	-377,588	-855,890	-66,748		-144,318	-67,588
17	-377,588	-855,890	-66,748	·	-144,318	-67,588
18	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
19	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
20	-377,588	* 	-66,748		-144,318	-67,588
21	-377,588		-66,748	-100,049	-144,318	-67,588
22	-377,588		-66,748	,	·	-67,588
23	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
24	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
25	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
26	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
27	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
28	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
29	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
30	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
31	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
32	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
33	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
34	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
35	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
36	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
37	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
38	-377,588	**************************************	-66,748	janananananananananananananananana	-144,318	-67,588
39	-377,588	-855,890	-66,748	-100,049	-144,318	-67,588
40	-7,979,136	-18,086,518	-1,410,509	-2,114,224	-3,049,695	-1,428,267
41	-6,567,968	-16,053,512	658	-81,218	-57,942	-17,099
42	5.7	8.9	1.00	1.0	1.0	1.0
43						
44						
45						
46						
47						
48): 4.725%					
49	ents pursuant to its 1	Fransportation Investr	nent Generating Eco	nomic Recovery (T)	GER) grant program ((TIGER Benefit-Cos
50			5	, (

	М	N	0	Р	Q	R
1					İ	
2	755,000	Sensitivity Analysis				
3	UR+m Ext	URCL 120%	URCL 150%	URCL labor x3	U 150% U	3xLabor
4	3.000%	3.000%	3.000%	3.000%	3.000%	3.000%
5	(17,931,777)	(26,265,050)			(6,459,331)	
6	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
7	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
8	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
9	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
10	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
11	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
12	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
13	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
14	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
15	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
16	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
17	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
18	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
19	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
20	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
21	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
22	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
23	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
24	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
25	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
26	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
27	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
28	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
29	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
30	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
31	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
32	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
33	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
34	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
35	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
36	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
37	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
38	-100,890		-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
39	-100,890	-\$1,294,667	-\$1,310,215	-\$1,889,034	-\$432,608	-\$684,066
40	-2,131,982	-27,358,697	-27,687,246	-39,918,767	(9,141,805)	(14,455,569)
41	-98,976	-25,947,529	-24,695,493			
42	1.0	9.1	9.3	13.3	6.5	10.2
43						
44						
45						
46						
47	ļ					
48						
49	t Resource Guide, 2-					
50						

	А	В	С	D	Е	F
1	Table B-12. Cost of Transport & Dis	posal of Refu	se Pneumatic (A	pplying Volume	Reduction From '	'Save As You Throw" P
2	· · · · · · · · · · · · · · · · · · ·	No-Action OR				
3		Manual	Upgrade(3)(4)	Upgrade(5)	Upgrade Avg(6)	
	Residential Refuse TPD(1)	7.33	6.45	6.45	6.45	
	Residential Paper TPD(1)	1.96	2.08	2.33	2.20	
	Residential MGP TPD(1)	1.27	1.33	1.64	1.48	
	Total	10.56	9.86	10.41	10.14	
8	W/ Avg 6% Source Reduction(3)				9.93	
9					·	
10	REFUSE					
11	Transport+Disposal Cost/Yr(12)	\$382,589	\$336,679	\$336,679	\$336,679	
12	Transport+Disposal Savings/Yr				\$45,911	
	Transport Fuel/Gals Yr(8)	6,827	6,008	6,008	6,008	
	Transport Fuel Savings/Gals Yr				819.24	
15	Transport GHG/Yr(7)	88			78	
	Transport GHG Savings/Yr				11	
17	Disposal GHG/Yr(9)	270			237	
	Disposal GHG Savings/Yr				32	
	Total Transport+Disposal GHG	358	0	0	315	
	Total Transport+Disposal GHG Savings				42.96	
	Transport BTUs/Yr(11)	948,271,737	834,479,128	834,479,128	834,479,128	
	Transport BTU Savings/Yr				113,792,608	
	Transport Truck Miles/Yr(10)	1264	1113	1113	1113	
24	Transport Truck Mile Savings/Yr				152	
25						
26	(1)Reconnaissance Report.				 	
	(2)Compostables are a subset of Refuse,	so these four row	s cannot be summ	ed.		
	(3)National averages, http://www.paytno	w.org/PAYT_CO_1	faqpaytSERA_v6.pd	df, 2008, accessed 1	.2-14-12.	
	National average %reduction in waste-ge		uding yard waste:		0.12	
	(4)Ibid., national avg % increase in recyc				0.06	
	(5)Ibid, national average recycling increas		generation.		0.05	
	(6)Ibid, using average of (4)+(5) method					
	(7)CBC, Taxes In, Garbage Out, 5-2012, p		v.cbcny.org/sites/d	efault/files/REPORT	_SolidWaste_053312	012.pdf, accessed 12-17-
	12. (Metric tons*1.1 to convert to US tons				,	
	(8)Ibid, p. 16, tons landfilled/yr	2,900,000				
36	(8)Ibid, pp.18-9., gals/yr	7,400,000				
	(9)Ibid, Table 2.					
	(10)NYC Mayor's Office of Sustainability a	nd Long-Term Pla	nning, Inventory o	of New York City Gre	enhouse Gas Emissio	ons, 9-2011, pp. 21 and
	32, cited by CBC, op. cit.					
	(11)Gals-to-BTUs conversion factor from I			Operations workshe	et	
42	(12)CBC op cit., p. 30: avg cost of transpo	ort and disposal			143	

	A	В	С	D	E	F	G
1	Table B-13. Annual Cost of Ro-Ro Collection	on from Roosev	elt Island				
	Refuse Collection			:	:		
3		2011 Actual	No-Action	U	UR	URCL	
4	Fuel Gallons (1)	933	1179	770	907	1398	
	Fuel Cost (1)	\$3,125	\$3,950	\$2,581	\$3,039	\$4,684	
6	Cost of Ro-Ro Truck, Ann (2)	\$4,709	\$5,951	\$3,477	\$3,477	\$3,123	
	Vehicle Maintenance (3)	\$2,929	\$3,701	\$2,163	\$2,163	\$3,423	
	Labor:						
	Total shifts per year (4)	35.75	45.18			41.78	
	Annual labor cost (5)	\$16,894	\$21,351		\$12,477	\$19,745	
	Total annual RO RO Cost:	\$27,656	\$34,952	\$20,698	\$21,156	\$30,975	
	Cost per ton:	\$13	\$13	\$8	\$8	\$8	
13							
	MGP Collection				!		
15		2011 Actual		U	UR	URCL	
16	Fuel Gallons (1)	414	523	585	202	218	
	Fuel Cost (1)	\$1,387	\$1,753	\$1,753	\$677	\$729	
	Cost of Ro-Ro Truck, Ann (2)	\$4,248	\$5,236		\$1,566	\$1,742	
	Vehicle Maintenance (3)	\$2,642	\$3,257	\$3,257	\$974	\$1,083	
	Labor:						
	Total shifts per year (4)	32.25	40.76	40.76	11.89	13.22	
	Annual labor cost (5)	\$15,240		\$18,788		\$6,249	
	Total annual RO RO Cost:	\$23,517	\$29,035	\$29,035	\$8,834	\$9,804	
24	Cost per ton:	\$63	\$63	\$63	\$19	\$19	
25							
	Paper & OCC Collection						
27		2011 Actual	No-Action	U	UR	URCL	
	Fuel Gallons (1)	1053			196	240	
	Fuel Cost (1)	\$3,526	\$4,456	\$4,456	\$658	\$803	
	Cost of Ro-Ro Truck, Ann (2)	\$10,141	\$12,503	\$12,503	\$1,566	\$1,802	
	Vehicle Maintenance (3)	\$6,308	\$7,776	\$7,776	\$195	\$224	
	Labor:				ļ		
	Total shifts per year (4)	77.00	97.31	97.31	11.89	13.68	
34	Annual labor cost (5)	\$36,387	\$45,986	A	\$5,617	\$6,465	
	Total annual RO RO Cost:	\$56,362	\$70,721	\$70,721	\$8,035	\$9,295	
	Cost per ton:	\$97	\$99	\$99	\$11	\$10	
37							1
	Total ann. cost all fractions:	\$107,536	\$134,708	\$120,454	\$38,024	\$50,074	
	Total ann. Shifts all fractions:	145.00	183.25		50.02	68.69	
	Total ann. Collections all fractions:	580.00	733.00	657.89	200.07	274.76	
	Notes:	1	<u> </u>	<u> </u>	<u> </u>	L. <u></u>	ļ
	(1) (Fuel for garage-AVAC*percentage of total trip					. For mileage calcu	
	#2 ULS B5 Diesel fuel/gallon, Brautigam to Miller				\$3.25		\$3.35
	(2) 2011 DSNY Ro-Ro, 5-yr life. Brautigam to Mille	er 10/06/11. Cost a	nnualized and appo	ortioned based on r	number of shifts ov	er total possible as	suming 6-day work
	wk, 52 wks/yr.		,	·	·		
	Truck cost, \$199,066 2011\$, inflated to 2013\$:	1	<u> </u>	<u> </u>	<u> </u>		\$205,462
	(3) 2011 DSNY Roll-On/Roll-Off annual maintenan	ce. Brautigam to M	iller 6/30/11. Cost	apportioned based	on number of shift	s over total possib	le assuming 6-day
	work wk, 52 wks/yr.					,	·
	Annual maintenance cost, \$24,763 in 2011\$, infla			<u> </u>	<u> </u>		\$25,559
	(4) Total annual shift calculation: each round trip t						
	(5) Labor cost aportioned based on number of shif				OSNY Salary. Brauti	gam to Miller 06/3	
	The average annual Sanworker salary plus fringe a			2013\$:			\$116,604
	RO/RO Pickup Differential @ \$92.82 per Day for 3	12 days year, inflat	ed to 2013\$:	İ	<u> </u>		\$30,835
I 547	Maximum annual labor Cost for RO RO:			!			\$147,438.96


	A	В	С	D	I E	F	G	Н	I	J	K	L	М	N	0	P	0
10	Table B-14 Pneumatic Upg	rade Conta	iner Calcu	ulation							!	:					
11		1								 							
12	FRACTIONS								T/day	·							
13		% WEIGHT	FRACTION	REST	PACKING	ORGANIC	PAPER		dwellings	5,875							
14	REST	0.30	1	0.30	0.00	0.00	0.00		kg/dwelling								
	PACKINGS	0.07	0	0.07	0.00	0.00	0.00		kg/Dwellin	1							
	ORGANIC	0.49	0	0.49	0.00	0.00	0.00		total	7.33							
	PAPER	0.14	0	0.14	0.00	0.00	0.00										
18		1.00		1.00	0.00	0.00	0.00										
19		2.00		1.00	0.00	0.00	0.00			ļ	ļ						
20			}		 						:						
	DENSITY				<u> </u>												
22		KG/L	DATA	CALC	Ť					 							
	REST	0.13		0.13						ļ							
	PACKING	0.08		0.08						<u> </u>	\						
	ORGANIC	0.20		0.20													
	PAPER	0.05		0.05								Correc. fact	or(0,25-1,00)				
27												0.75					
28]												
	CONTAINERS MOVE																
30		FRAC-CONT.		CONT	% Fraction	Tons/CONT	VOLUM				RATIO WEIGHT		€/TRIP	€/DAY	TOTAL	Trips/Yr	Tons/Container
	REST C	0	1	0	0.00	12.00	30.00	0.29	0.13	0.00	0.00	0.00	0.00	0.00	0.00		
_	PACKING C ORGANIC C	0	1	0	0.00	12.00 12.00	30.00	0.50 0.77	0.08	0.00	0.00	0.00	0.00	0.00	0.00 0.00		
	PAPER-CARDBOARD C	0	1	0	0.00	12.00	30.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
-	REST C-CRANE	0	0	0	0.00	10.00	25.00	0.07	0.03	0.00	0.00	0.00	0.00	0.00	0.00		
	PACKING C-CRANE	0	0	0	0.00	10.00	25.00	0.50	0.13	0.00	0.00	0.00	0.00	0.00	0.00		
	ORGANIC C-CRANE	0	0	0	0.00	10.00	25.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
	PAPER-CARDBOARD C-CRANE	0	0	0	0.00	10.00	25.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
39	REST G	1	1	1	1.00	19.00	45.60	0.29	0.13	0.35	0.39	0.29	0.00	0.00	0.00	105.61	25.33
40	PACKING G	1	1	1	0.00	19.00	45.60	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
	ORGANIC G	0	1	0	0.00	19.00	45.60	0.30	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
	PAPER-CARDBOARD G	1	1	1	0.00	19.00	45.60	0.50	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
	REST G-CRANE	1	0	0	0.00	10.00	25.00	0.29	0.13		0.00	0.00	0.00	0.00	0.00		
	PACKING G-CRANE	1	0	0	0.00	10.00	25.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
	ORGANIC G-CRANE	0	0	0	0.00	10.00	25.00	0.77	0.20		0.00	0.00	0.00	0.00	0.00		
	PAPER-CARDBOARD G-CRANE	1	0	0	0.00	10.00	25.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
4/	REST F	0	-	0	0.00	6.00	21.00	0.40	0.13	0.00	0.00	0.00	0.00	0.00	0.00		

	A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q
20	Table B-14 Pneumatic Upgrade Co	ontainer Calc	culation	(continued	Upgrade +	Recycling)											
21	FRACTIONS	7								}	(:						÷
22		% WEIGHT	FRACTION	REST	PACKING	ORGANIC	PAPER	(†
23	REST	0.41	1	0.41	0.00	0.00	0.00				····	÷	·				<u> </u>
24	PACKINGS	0.12	1	0.00	0.12	0.00	0.00										
25	ORGANIC	0.28	0	0.28	0.00	0.00	0.00				: :	}					
26	PAPER	0.19	1	0.00	0.00	0.00	0.19					 					
27	770 EK	1.00	-	0.69	0.12	0.00	0.19			}							
28		1.00	!	- 0.03	0.12	0.00	0.15			}		 					÷
29		·	 	÷	 	 					<u> </u>						
	DENSITY	-}	<u> </u>		-}	RI 2011 Actua	I 0/- Woight	Total RI 2011 t	Drainstad tad	{		ļ	}}				ļ
31	DENSIT	KG/L	DATA	CALC	f	mgp	0 17	8 45	10.56	}		}					
32	REST	0.13	DAIA	0.13			·		10.50	}		ļ	·				<u> </u>
33	PACKING	0.08		0.08		paper refuse-organic	0.28				·				·		÷
34	ORGANIC	0.20		0.20		refuse-refuse	0.41				:	· · · · · · · · · · · · · · · · · · ·					
35	PAPER	0.05		0.05		total refuse	0.69				Corr	ec. factor(0,25-					:
36			1	ļ							!	0.75					
37		1	1	1	-	:	}]		l l		
	CONTAINERS MOVE	1		1	1	i	}	:		}		1	(<u> </u>
39		FRAC-CONT.	TRANSP	CONT	% Fraction	Tons/CONT	VOLUM	COMPACT.	DENSITY		RATIO WEIGHT		€/TRIP	€/DAY	TOTAL	Trips/Yr	: Tons/Container
41	REST C PACKING C	0	1	0	0.00	12.00 12.00	30.00	0.29 0.50	0.13	0.00	0.00	0.00	0.00	0.00	0.00		
42	ORGANIC C	0	1	0	0.00	12.00	30.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		ļ
	PAPER-CARDBOARD C	0	1	ŏ	0.00	12.00	30.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
44	REST C-CRANE	0	0	0	0.00	10.00	25.00	0.29	0.13	0.00	0.00	0.00	0.00	0.00	0.00		·}
45	PACKING C-CRANE	0	0	0	0.00	10.00	25.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		Ì
46	ORGANIC C-CRANE	0	0	0	0.00	10.00	25.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
47	PAPER-CARDBOARD C-CRANE	0	0	0	0.00	10.00	25.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		1
48	REST G	1	1	1	0.69	19.00	45.60	0.29	0.13	0.35	0.38	0.29	0.00	0.00	0.00	104.98	
	PACKING G ORGANIC G	0	1	1 0	0.12	19.00 19.00	45.60 45.60	0.50 0.30	0.08	0.17 0.00	0.07	0.13	0.00	0.00	0.00	47.55	9.73
51	PAPER-CARDBOARD G	1	1	1	0.00	19.00	45.60		0.20	0.00	0.00	0.00	0.00	0.00	0.00	43.40	16.88
	REST G-CRANE	1	0	ō	0.00	10.00	25.00	0,29	0.13	0.00	0.00	0.00	0.00	0.00	0.00	43.40	10.00
	PACKING G-CRANE	1	0	0	0.00	10.00	25.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
54	ORGANIC G-CRANE	0	0	Ö	0.00	10.00	25.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00		-}
	PAPER-CARDBOARD G-CRANE	1	0	0	0.00	10.00	25.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		1
	REST F	0	-	0	0.00	6.00	21.00	0.40	0.13	0.00	0.00	0.00	0.00	0.00	0.00		
	PACKING F	0	-	0	0.00	3.50	21.00	1.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
	ORGANIC F	0	-	0	0.00	6.00	21.00	0.91	0.20	0.00	0.00	0.00	0.00	0.00	0.00		<u> </u>
	PAPER-CARDBOARD F	0	-	0	0.00 1.00	2.00	21.00	1.25	0.05	0.00	0.00	0.00	0.00	0.00	0.00		ļ
61		.66	1	ļ	1.00	ļ	}	ļ		}	ļ	0.75	ļ		0.00		ļ
OI	UTRC: assume 750 lbs compacted mixed	u omce paper/c	occ per cy		<u> </u>					<u> </u>	<u> </u>	<u> </u>					<u>:</u>

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q
29	Table B-14 Pneumatic Upg	rade Conta		lation	(continu	ed: Upgra		ling, Comm	ercial & L	itter)	<u> </u>				<u> </u>		
30	FRACTIONS				(001111110	opg.w	,,	g,	T/day	,							
31		% WEIGHT	FRACTION	REST	PACKING	ORGANIC	PAPER		dwellings	5,875							
32	REST	0.54	1	0.54	0.00	0.00	0.00		kg/dwelling	3.20							
33	PACKINGS	0.09	1	0.00	0.09	0.00	0.00		kg/Dwellin d	ata							
34	ORGANIC	0.21	0	0.21	0.00	0.00	0.00		total	15.54							
35	PAPER	0.16	1	0.00	0.00	0.00	0.16										
36		1.00		0.75	0.09	0.00	0.16										
37	DENSITY		-	=	_		-	•									
38		KG/L	DATA	CALC													
	REST	0.13		0.13													
	PACKING	0.08		0.08													
41	ORGANIC	0.20		0.20							Corre	c. factor(0,2	5-1,00)				
42	PAPER	0.05		0.05								0.75					
43																	
44	CONTAINERS MOVE		r								1						
45		FRAC-CONT.	TRANSP	CONT	% Fraction	Tons/CONT	VOLUM	COMPACT.			RATIO WEIGH		€/TRIP	€/DAY	TOTAL		Tons/Container
	REST C	0	1	0	0.00	12.00	30.00	0.29		0.00	0.00	0.00	0.00	0.00	0.00		
	PACKING C	0	1	0	0.00	12.00	30.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
48	ORGANIC C	0	1	0	0.00	12.00	30.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
49	PAPER-CARDBOARD C	0	1	0	0.00	12.00	30.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
50	REST C-CRANE	0	0	0	0.00	10.00	25.00	0.29	0.13	0.00	0.00	0.00	0.00	0.00	0.00		
51	PACKING C-CRANE	0	0	0	0.00	10.00	25.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
	ORGANIC C-CRANE	0	0	0	0.00	10.00	25.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00	1	
53 54	PAPER-CARDBOARD C-CRANE	0	0	0	0.00	10.00	25.00	0.67	0.05	0.00	0.00	0.00	0.00	0.00	0.00		05.00
	REST G	1	1	1	0.75	19.00	45.60	0.29		0.56	0.61	0.46	0.00	0.00	0.00	1	
55 56	PACKING G	1	1	1	0.09	19.00	45.60	0.50		0.19	0.07	0.14	0.00	0.00	0.00	52.90	9.73
57	ORGANIC G	0	1	0	0.00	19.00	45.60	0.30	0.20	0.00	0.00	0.00	0.00	0.00	0.00	F4 73	40.00
58	PAPER-CARDBOARD G REST G-CRANE	1	0	1 0	0.16 0.00	19.00 10.00	45.60 25.00	0.29	0.13	0.00	0.00	0.00	0.00	0.00	0.00	54.73	16.88
	PACKING G-CRANE	1	0	0	0.00	10.00	25.00	0.29	0.13	0.00	0.00	0.00	0.00	0.00	0.00		
60	ORGANIC G-CRANE	0	0	0	0.00	10.00	25.00	0.50	0.08	0.00	0.00	0.00	0.00	0.00	0.00		
	PAPER-CARDBOARD G-CRANE	1	0	0	0.00	10.00	25.00	0.77	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
	REST F	0	-	0	0.00	6.00	21.00	0.40	0.03	0.00	0.00	0.00	0.00	0.00	0.00	ł	
	PACKING F	0	-	0	0.00	3.50	21.00	1.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	i	
	ORGANIC F	0	-	0	0.00	6.00	21.00	0.91	0.20	0.00	0.00	0.00	0.00	0.00	0.00		
	PAPER-CARDBOARD F	0	-	0	0.00	2.00	21.00	1.25	0.05	0.00	0.00	0.00	0.00	0.00	0.00		
67	TOTAL UTRC: assume 750 lbs compact	ad mivad affi	ica nanar/OC	Cnorow	1.00							1.02			0.00	J	
	RI 2011 Actual % Weight (2)	eu mixeu om	се рарег/ос	с рег су		Г	RI Commerc	ial 2011 Actual s	ame as proj.	(1)]						
	5 (,			future tpd	Projected				. ,	` '							
69 70				recycling	tpd			% Weight		tpd							
	paper	0.12 0.19					mgp paper	0.03 0.12		0.14 0.57							
	refuse-organic	0.28			1.00		refuse-organ			1.20							
73	refuse-refuse	0.41	4.20		2.02		refuse-refuse			2.77							
75	total refuse Total	0.69 1.00			5.31 7.33		total refuse	1.00 Total proi	commercial:	3.97 4.68							
76		tal add. Future		0.61				RIOC &	Litter refuse:	0.30							
77	DI 2044 Designated combined Comm			f DIOO 0 134	4												
79	RI 2011 Projected combined Comm	ercial & Reside	ntial (& .3 refu:	se for RIOC & lit %weight	terbins)												
80	mgp		1.41	0.09													
	paper		2.53														
	refuse-organic refuse-refuse		3.22 8.38														
84	total refuse		11.30	0.73													
85			15.54	1.00													
	Notes (1) See Ref 4 Summary																
	(2) See Ref3-RI_residential bldgs.xl																
	RI Study-wComlFees.>						CON	TAINERS UP	Cl							3-1-41	

	Α	В	С	D	Е	F	G	Н
1	Table B-15. C	urrent Roosevel	t Island DSNY R	O RO Colle	ctions			
2		Collections(b)	Fraction Ratio	Tons(b)	Avg T/Col	Tons 2007-9(a)	Delta '07-'09 v '12©	Delta%
3	Refuse/Y	143	0.25	1770.49	12.38	2014.3		
4	Paper/Y	308	0.53	369.26	1.20	402		
5	MGP/Y	129	0.22	266.03	2.06	259.4		
6	Total	580		2405.78		2675.7	269.9	0.10
7	Tot Per/Wk	11.15						
8	Hrs/Wk	22.31						
9	Hrs/Day	3.19						
10	Refuse/Wk	2.75						
11	Refuse Hr/W	5.50						
12	Refuse Hr/D	0.79						
13								
14						·		
15	(a) DSNY, Roos	evelt Island Costs to	Convert to 25 Yard	d Truck Pick-U	lp, Braugtigam to	o Miller, 6-30-11, Appe	ndix A, Reference 1.	
16	(b) DSNY Collect	ction Route Data, FY	'2012 (SCAN).					
17								
18	© Delta 2007-9	v. 2012 could be d	ue to (1) general ci	tywide reduct	ion in generation	n, (2) missing some ro	utes because scrubbed rou	tes that
19		or other indication t						

University Transportation Research Center - Region 2 Funded by the U.S. Department of Transportation

