
Final

 July 2018

University Transportation Research Center - Region 2

Report
Performing Organization: Rowan University
                                               

Road Weather Information 
Systems for Winter Road 
Maintenance 

Sponsor:
University Transportation Research Center - Region 2
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The Region 2 University Transportation Research Center (UTRC) is one of ten original University 
Transportation Centers established in 1987 by the U.S. Congress. These Centers were established 
with the recognition that transportation plays a key role in the nation's economy and the quality 
of life of its citizens. University faculty members provide a critical link in resolving our national 
and regional transportation problems while training the professionals who address our transpor-
tation systems and their customers on a daily basis.

The UTRC was established in order to support research, education and the transfer of technology 
in the �ield of transportation. The theme of the Center is "Planning and Managing Regional 
Transportation Systems in a Changing World." Presently, under the direction of Dr. Camille Kamga, 
the UTRC represents USDOT Region II, including New York, New Jersey, Puerto Rico and the U.S. 
Virgin Islands. Functioning as a consortium of twelve major Universities throughout the region, 
UTRC is located at the CUNY Institute for Transportation Systems at The City College of New York, 
the lead institution of the consortium. The Center, through its consortium, an Agency-Industry 
Council and its Director and Staff, supports research, education, and technology transfer under its 
theme. UTRC’s three main goals are:

Research

The research program objectives are (1) to develop a theme based transportation research 
program that is responsive to the needs of regional transportation organizations and stakehold-
ers, and (2) to conduct that program in cooperation with the partners. The program includes both 
studies that are identi�ied with research partners of projects targeted to the theme, and targeted, 
short-term projects. The program develops competitive proposals, which are evaluated to insure 
the mostresponsive UTRC team conducts the work. The research program is responsive to the 
UTRC theme: “Planning and Managing Regional Transportation Systems in a Changing World.” The 
complex transportation system of transit and infrastructure, and the rapidly changing environ-
ment impacts the nation’s largest city and metropolitan area. The New York/New Jersey 
Metropolitan has over 19 million people, 600,000 businesses and 9 million workers. The Region’s 
intermodal and multimodal systems must serve all customers and stakeholders within the region 
and globally.Under the current grant, the new research projects and the ongoing research projects 
concentrate the program efforts on the categories of Transportation Systems Performance and 
Information Infrastructure to provide needed services to the New Jersey Department of Transpor-
tation, New York City Department of Transportation, New York Metropolitan Transportation 
Council , New York State Department of Transportation, and the New York State Energy and 
Research Development Authorityand others, all while enhancing the center’s theme.

Education and Workforce Development 

The modern professional must combine the technical skills of engineering and planning with 
knowledge of economics, environmental science, management, �inance, and law as well as 
negotiation skills, psychology and sociology. And, she/he must be computer literate, wired to the 
web, and knowledgeable about advances in information technology. UTRC’s education and 
training efforts provide a multidisciplinary program of course work and experiential learning to 
train students and provide advanced training or retraining of practitioners to plan and manage 
regional transportation systems. UTRC must meet the need to educate the undergraduate and 
graduate student with a foundation of transportation fundamentals that allows for solving 
complex problems in a world much more dynamic than even a decade ago. Simultaneously, the 
demand for continuing education is growing – either because of professional license requirements 
or because the workplace demands it – and provides the opportunity to combine State of Practice 
education with tailored ways of delivering content.

Technology Transfer

UTRC’s Technology Transfer Program goes beyond what might be considered “traditional” 
technology transfer activities. Its main objectives are (1) to increase the awareness and level of 
information concerning transportation issues facing Region 2; (2) to improve the knowledge base 
and approach to problem solving of the region’s transportation workforce, from those operating 
the systems to those at the most senior level of managing the system; and by doing so, to improve 
the overall professional capability of the transportation workforce; (3) to stimulate discussion and 
debate concerning the integration of new technologies into our culture, our work and our 
transportation systems; (4) to provide the more traditional but extremely important job of 
disseminating research and project reports, studies, analysis and use of tools to the education, 
research and practicing community both nationally and internationally; and (5) to provide 
unbiased information and testimony to decision-makers concerning regional transportation 
issues consistent with the UTRC theme.
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regulation. This document is disseminated under the sponsorship of the US Department of 
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Road Weather Information Systems for Winter Road Maintenance 

Dr. Rouzbeh Nazari, Dr. Hao Wang, Xiaodan Chen, Nicholas Spanos, Nicholas Minner, Carlos 

Perdomo, Garrett Jacob, Jason Roberts, Thomas Thornton 

 

Abstract 

Road Weather Information System (RWIS) technology is a useful tool in evaluating road 

conditions in cold climates, and is helpful in optimizing the timing of salting/plowing procedures, 

as well as the quantity of salt to be used. RWIS technology is used as a means of improving the 

cost-effectiveness of winter road maintenance. Most agencies use RWIS data to predict winter 

storms that can justify snow and ice control, plowing, and chemical, salt, and sand operations. 

Agencies also use RWIS to predict weather for nighttime paving crews and also for legal issues 

when an operation is supposed to be done at a certain temperature. Using this information helps 

agencies to time out road repair jobs accordingly so that the job can be done in the least amount of 

time and also in the correct conditions for the materials to be applied in. Two models that are being 

analyzed are the Model of the Environment and Temperature of the Roads (METRo) and statistical 

models based on field data. These models are used mostly because of their capability of predicting 

pavement surface temperature. 

 

Objectives  

The objective of this project was to evaluate two different road forecasting models, t the Model of 

the Environment and Temperature of the Roads (METRo) and statistical models based on field 

data. Through analysis, the better model of the two would be chosen to be further analyzed and 

download. A more thorough analysis would be done on the corresponding program using RWIS 

data and comparing the programs forecasted output to the actual observed data. 

 

 

Introduction 

The Road Weather Information System is currently being used by DOTs in multiple states.  Road 

Weather Information Systems (RWIS) is an effective system to help winter maintenance 

operations by recording weather and pavement data at selected locations.  RWIS is composed of 

weather, pavement sensors, data processing units, and data transmission equipment, Figure 1. 

RWIS uses different types of sensors such as a thermometer, anemometer, wind vane, and rain 

gauge.  These sensors along with others collect data such as temperature, wind speed, wind 

direction, fog and smoke, precipitation. RWIS also has another integrated feature that can measure 

pavement and subbase temperature of a road by connecting a probe and embedding it into the 

respective layers of the area of interest, Figure 1.  



 
Figure 1: a) Environmental Sensor System (ESS) for RWIS (After Rall 2010) and (b) Application of RWIS Data 

 

The road weather information system (RWIS) network is a collection of environmental sensor 

stations (ESS), which gives state DOTs unprecedented access to detailed, accurate, timely, and 

roadway-relevant weather information to effectively and efficiently promote safety, mobility and 

productivity in the face of weather-related challenges. RWIS network of ESSs currently installed 

across the State of New Jersey are providing valuable road weather data to the NJDOT, Figure 2-

a. These stations have been applied to assist maintenance managers about road treatments, such as 

salting, plowing, or a combination of approaches, Figure 2-b. Based on the RWIS, decision support 

systems have been developed to recommend actions given forecasted conditions to promote safety 

and efficiency. 

 
Figure 2: a) NJ RWIS Stations b) Road surface temperature from RWIS station Summit and Allamuchy, NJ 

 

Winter conditions cause for unsafe roads and lots of time and money trying to make the roads safe 

again for the users. Every year, state highway agencies spend approximately 1.5 billion dollars 

clearing roadways in order to be safely used by its travelers. Currently there are two methods being 

implemented to keep road safe for travelers: anti-icing and deicing. [10]   

  

Anti-icing is a strategy that prevents snow and ice from sticking to the roadway. It involves putting 

down a chemical solution on the roadway beforehand to keep the snow from sticking to the asphalt 



by lowering the temperature at which water freezes at. This causes the snow to become slushier 

instead of icy allowing motorists to have more control of their vehicle while driving. However, 

anti-icing is a strategy that has to start before or as the storm is starting which means that models 

need to predict where the storm will be so that the agencies can pinpoint when and where to begin 

the process. This makes RWIS data very important since the data that is recorded is needed in the 

models in order to predict the storm. Models such as empirical models and METRo can be used to 

get this prediction to implement the strategy, at the right time, with the right amount of anti-icing 

solution. Anti-icing strategies have proven to help keep roads safe for travelers, reduce the 

environmental impact of winter operations, and make post-storm clean-up easier. The anti-icing 

chemicals that are being used are liquid calcium magnesium acetate, liquid calcium chloride, liquid 

magnesium chloride, liquid sodium chloride, liquid potassium acetate, and solid sodium chloride. 

[10]  

  

Deicing is another strategy to help clear roads during winter storms. This is the tradition strategy 

for winter storms which includes plowing, salting, and sanding. These operations all involve 

breaking the bond between the pavement and the snow on its surface. Although it has been proven 

to be effective over the years, it has proven to not always be the most efficient. The lack of site-

specific, detailed weather information results in highway agencies waiting until the storm hits to 

send out their crews. By the time crews are sent out, the storm already has the advantage and the 

crews struggle to keep up with the storm and keep the roads clear and safe for motorists to operate 

their vehicles. [10]  

  

In 1995, 15 states started participating in the Federal Highway Administration’s (FHWA) test and 

evaluation to determine the effectiveness of the anti-icing operations. The results from each of the 

15 states are being used to determine the conditions that anti-icing is most effective, as well as the 

strategies and techniques that are successful in the broad range of topographic, climatic, and traffic 

conditions. The anti-icing operation comes down to knowing which chemical to use, at what time, 

and amount. Different locations have different answers as to each step which depend on the sites 

conditions such as weather, geography, and traffic. Determining this information depends on real-

time, localized weather information as well as accurate forecasts for specific corridors. The results 

found from this test included; a reduction in the amount of chemicals needed, the prevention of 

black ice or frost on bridge decks when liquid chemicals are periodically applied, required less 

effort to return the pavement to a bare condition at the end of the storm, and the reduction in the 

amount of abrasive used on the road. [10]  

 

  

 

 



Literature Review 
  

Enhanced Integrated Climatic Model (EICM)  

The Enhanced Integrated Climatic Model is used in order to predict and simulate internal pavement 

temperature, moisture, and freeze-thaw conditions as a function of time from climatic data. The 

climatic data that is needed for this model are conditions such as air temperature, precipitation, 

wind speed, percentage sunshine, and relative humidity  

 

Another input that affects the pavement temperature is the solar reflectivity. This value differs 

according to pavement type and pavement age. For rigid pavements the value increases as the 

concrete ages and darkens while flexible pavements the value decreases with time as the pavement 

lightens in color. EICM allows the user to enter the number of increments for each layer and it will 

generate the temperatures for specified nodes at the certain depths.   

  

EICM uses three models to collect and get its data from that is used to simulate pavement 

conditions. The three models are:   

● Climatic-Materials-Structures (CMS) model, developed at the University of Illinois.  

● Infiltration and Drainage (ID) model, developed at the Texas Transportation Institute.  

● Frost Heave and Thaw Settlement Model, developed by the CRREL.  

  

The Climatic-Materials-Structures (CMS) model simulates field conditions by accounting for the 

differences in climatic data due to the differences in geographical location. The climatic model 

that is incorporated in the CMS program takes material and climatic inputs and calculated 

temperature and moisture profiles that vary with time. The program uses this climatic data and the 

profiles to determine the materials model. The materials model calculates the asphalt base, 

subbase, and subgrade stiffness. Lastly the output of both climatic and material data can be 

combined with load data that can be put into structure analysis and performance models.   

 The Infiltration and Drainage (ID) model simulates the permeability of the pavement base and 

subgrade. This model accounts for the amount of water that is penetrating the asphalt through 

cracks and joints. This method consists of five (5) parts: (1) Estimation of the amount of rainfall 

that falls each day, (2) The infiltration of water through the cracks and joints in the pavement, (3) 

Computing the simultaneous drainage of water into the subgrade and into the lateral drains, (4) 

The dry and wet probabilities of a pavement, and (5) Effect of water saturation on load-carrying 

capacity of base course and subgrade. Infiltration through pavement cracks and joints used either 

Ridgeway’s rate of infiltration of water through cracks and joints or Dempsey and Robnett’s 

regression equations that were developed from field measurements that estimated the amount of 

free water that was entering the pavement base course.  

  



The Frost Heave and Thaw Settlement model is a one-dimensional representation of vertical heat 

and moisture flux and is based on a numerical solution technique termed the nodal domain 

integration method. This model is used to predict the amount of moisture in the system to better 

understand the freeze-thaw in the system. This model is primarily being used for non-cohesive 

soils with a grain size varying from silts to dirty gravel. When this model was used with cohesive 

soil, clays, the results have not been validated. When using this model a soil of uniform horizontal 

stratified soils can be viewed in 3 layers: fully frozen, fully unfrozen, and zone of freezing. The 

zone of freezing is importing fully unfrozen soil and exporting fully frozen soil to the extent that 

the volume of the exported is greater than the imported, which causes the soil to heave. When the 

soil freezes with more volume than previously it wants to move upwards which gives the soil no 

place to go but upwards and creates bumps and cracks in the roadway [13].   

  

  
Figure 3. In this figure soil heaves have created bumps and cracks in the roadway.  

 

Performance Assessment EICM  

In 2003 a comparison of the EICM model and field measurements were conducted by Zubair 

Ahmed, Ivana Marukic, Sameh Zaghloul, and Nick Vitillo. The data used was from New Jersey in 

the months January, July, September, and December which typically depict the four seasons. Since 

EICM needs specific inputs of data for the model to be calculated they started with a sensitivity 

test of the biggest changing factors. Test runs were also conducted to see how well generated data 

from EICM would match to actual field measurements.   



  
Figure 4. Temperature sensitivity analysis results on July 10, 2003. (a) wind speed sensitivity 

(b) percentage of sunshine sensitivity.   

  

In Figure 4 the sensitivity tests shows that the EICM is highly sensitive to the wind speed. The 

predicted temperature curve has a greater variation to it as the wind speed increases. This test 

shows that the greater the wind speed at the same percentage of sunshine the lower the temperature 

will be on the asphalt surface. EICM also predicts a temperature that varies greatly due to wind 

speed below the surface 150 cm. The sensitivity of the percentage of sunshine on the asphalt 

surface does not vary significantly from an increase of sunshine percentage.   

   



  

Figure 5 Difference in measured versus predicted temperature in asphalt surface later, (a) 

September 2003 and (b) July 2003.  

  

Figure 5 shows field measured temperatures versus EICM generated temperatures of the surface 

of the asphalt. The figure shows that EICM generate temperatures are always higher than what is 

really recorded but follow the overall trend of the temperature pretty well.   

From the results of this test if we use this model to predict temperature for winter operations the 

model will generate a higher temperature than it will really be outside. This causes for an issue 

where the EICM could predict a given day to be 6 degrees Celsius but the actual temperature could 

be 0 degrees Celsius which is freezing. The problem with temperatures being greater than the 

actual temperature is that the winter operations crew will calculate the winter weather preparation 

incorrectly and may cause for the roads to become frozen in areas and unsafe.  

  



 

Figure 6. Correlation analysis for moisture content for (a) LTPP Site 5E and (b) LTPP Site 9C.  

  

Figure 6 shows EICM predicted versus measured moisture content at two different test sites in 

New Jersey. From the graph there is no correlation between the two. The generated value and 

actual measured value vary too much to see a correlation between EICM and actual conditions. 

Without proper moisture content the program will not be able to accurately predict freeze thaw 

conditions that need to be remediated so that the soil does not heave or crack. If the model is 

incorrect the DOT will be misguided in their findings for soil heaves and cracks due to subbase 

moisture freezing. From the study that was conducted with New Jersey weather information has 

proven to have false data that has an error percentage that is too high to use for Winter Weather 

Road Operations. The data will provide misguided results and will cause in unsafe, and improper 

usages of materials for Winter Weather Operations.   

 

Methodology  

A deeper look was taken into METRo and the corresponding files that make it run properly. Once 

the files were analyzed, METRo could be properly installed and the METRo self test could be run 

successfully. Once METRo was installed, the data would be formatted correctly based off of new 



configured standards that were found. This data collected for the observation would be from 2013 

January to December 2014 for the Forecast and Observation data. The data set into METRo 

however, for the observation data was set from January 2013 to the end of the year in December 

of 2014. The Forecast data was set from June 2013 to June 2014 so that it overlapped with the 

Observation data. Thus METRo would produce an output from January 2014 to June 2014 which 

was then compared against the collected observation data of 2014. This allowed for the error and 

accuracy of METRo to be analyzed. Furthermore, a GUI was created for ease of use so the user 

does not have to use the command line every time. Later on, the implementation of METRo in 

windows was analyzed.  

 

Model of the Environment and Temperature of the Roads (METRo)  

The METRo model is used to forecast local pavement temperatures and road conditions, by using 

weather forecasts coupled with road surface observations. Using this coupled data, the METRo 

system is able to predict the evolution of pavement temperatures, as well as the accumulation of 

liquid (rain), snow, and ice.  

The METRo model consists of 3 parts: an energy balance module for the road surface, a heat 

conduction module for the road material, and a module that deals with water, ice, and snow 

accumulation.   

1. Energy Balance Module  

Correct evaluation of energy fluxes within the road surface is crucial to obtaining accurate 

forecasts in road conditions. The following formula is used in determining the energy fluxes at the 

road surface:  

𝑅 = (1 − 𝛼)𝑆 + 𝜀𝐼 − 𝜀𝜎𝑇𝑠 − 𝐻 + 𝐿𝑎𝐸 ± 𝐿𝑓𝑃 + 𝐴 

where R is the sum of net solar radiation flux, S is the incoming flux, � is the albedo (amount of 

radiation reflected by the road surface), εI is the absorbed incoming infrared radiation flux, σ is 

the Stefan-Boltzmann constant, Ts  is the road temperature,  H is the sensible turbulent heat flux, 

L�E is the latent heat flux, ±LfP is the flux associated with phase changes of precipitating water, 

and A is anthropogenic flux. In future models, a variable for shading will be incorporated to 

account for sunlight exposure.  

The METRo technology is able to calculate all of these incoming radiation fluxes, and use 

correction factors to compensate for discrepancies between forecasted values, and observed 

values during the coupling phase.  

  

2. Heat Conduction Module for Road Material  

The evolution of the temperature profile in road material is found using the following one-

dimensional heat diffusion formula:  

𝐶(𝑧)
𝛿𝑇(𝑧, 𝑡)

𝛿𝑡
= −

𝛿𝐺(𝑧, 𝑡)

𝛿𝑧
 



Where C is heat capacity, and G is the ground heat flux. The ground heat flux value is calculated 

by the following formula:  

𝐺(𝑧, 𝑡) = −𝑘(𝑧)
𝛿𝑇(𝑧, 𝑡)

𝛿𝑧
 

 

Where k is the heat conductivity. C and k values vary with different road materials, therefore the 

values will be different depending on depth, z, in the road profile. A numerical grid is coupled 

with the formulae for METRo’s use. There are two different numerical grids currently available: 

a variable-resolution grid for normal roads resting on soil, and a uniform-resolution grid for use 

on bridges and overpasses, which are suspended in midair [3].  

  

3. Surface Water/Ice Accumulation Model  

The METRo model is able to predict the accumulation of water, ice, and snow on the road surface 

by calculating precipitation, evaporation, runoff, etc. The system also has the ability to make 

assumptions about snow cleared off the road by traffic [3]. A system of two reservoirs is used to 

simulate the accumulation of water, snow, and ice on the road. Only one of the reservoirs is to be 

assumed nonempty at any time t, except during a phase transition, where one reservoir’s contents 

are transferred to the other. The change in the amount of substance on the road surface can be 

quantified by the following formulae:  

 

𝑑𝑊𝑡

𝑑𝑡
= 𝑃 − 𝐸 +

𝑅 − 𝐺1

𝐿𝑓
− 𝑟 

𝑑𝑊𝑠

𝑑𝑡
= 𝑃 − 𝐸 −

𝑅 − 𝐺1

𝐿𝑓
− 𝑟 

Where Wt is the evolution of water, Ws is the evolution of ice and snow, G1 is the downward heat 

flux between the first and second layers in the road, r is the runoff, P is the precipitation, E is the 

evaporation, and (R-G1) /Lf is a transfer term only active at 0oC [3].  

The process of predicting road surface characteristics is separated into the 4 parts: the atmospheric 

forcing phase, initialization phase, coupling phase, and forecast phase. During the atmospheric 

forcing phase, weather forecast are either provided completely automatically, or by meteorologists. 

For both instances, METRo is linked to the “SCRIBE” system, which is an expert system able to 

predict any type of weather forecast based on two sets of matrices, each containing different 

weather elements such as NWP output, statistical guidance from PP models, UMOS models, 

models of other analyses, and climatology data [13]. The SCRIBE matrices are decoded by 

regional weather centers, and the weather elements are fed to a forecast generator. The forecasts 

include road condition forecasts from METRo. The atmospheric forcing stage of the METRo 

software can be run automatically, or operated and modified manually by meteorologists.  

  



For the automatic mode of atmospheric forcing, METRo inputs are taken from the SCRIBE 

matrices, one with regular weather conditions, and one with radiative fluxes. A benefit of the 

automated mode is its easiness of use. Being that all variables needed for forecasts are included in 

the SCRIBE matrices, no manual intervention is required, and METRo runs completely 

automatically.  

  

For the manual mode, meteorologists can use the SCRIBE interface to modify the forecast of the 

variables (temperature, humidity, wind, precipitation amount and type, and cloud cover). For 

time’s sake, the meteorologist can modify variable at only one site, and the same atmospheric 

forcing can be implemented at all sites in the area, but with METRo forecasts respective to those 

sites. Challenges arise in the manual mode when meteorologists are seldom trained to modify these 

forecasted values for infrared and radiative fluxes. These variable cannot be used in manual mode 

because of meteorologists modifying the forecasts, which makes the variables obsolete. Therefore, 

instead of using given variables for radiative fluxes, METRo must use parameterization developed 

from statistical analysis of previous radiative fluxes.   

  

For the initialization phase, initial road temperature profiles are needed for each forecast. 

Therefore, METRo uses road temperature observations over a 2-day period to force the heat 

conduction model. The road profile produced at the end of this period is what will be used as the 

initial condition in the following period- the coupling phase [3].  

  

In the coupling phase, METRo adjusts the forecasted road temperature values to coincide with 

actual observations from local weather stations. The previously mentioned SCRIBE forecasts are 

provided to the METRo model every 12 hours, while RWIS forecasts are issued at various points 

throughout the day. Within the coupling period, METRo can perform short-term road temperature 

forecasts during delays between the beginning of the most recent atmospheric forecast period and 

the time when METRo forecasts are issued.  

  

After the coupling period, it is noted that values retained during atmospheric forcing may still 

differ from forecasts from the 12-hourly provided SCRIBE matrices. Therefore, in the forecasting 

phase, the atmospheric forcing values may be modified to reflect the initial discrepancies between 

forecasts, and actual observations. To do this, METRo is initialized with the most recent forecasts 

available, and is then forced with both initial observations and original forecasted values.  

 

METRo Challenges, Limitations, and Shortcomings  

A major challenge that is faced when implementing METRo technology is the necessity for a 

profile of the road’s surface and subsurface. If the previously mentioned 2 day observations are 

not carried out prior to the coupling phase, the METRo device will be unable to couple previous 

observations to predictions.   



Another potential drawback with METRo software is that it takes approximately 2 seconds to 

generate a 48-hour forecast, which is rather long compared to the 0.2 seconds it takes to generate 

the same forecast for SNTHERM software, which only evaluates snow cover [8].   

  

Moreover, the METRo appears to consistently perform poorly during the summer time. This issue 

can be mostly attributed to the fact that the METRo software was created for the purpose of 

analyzing roads in winter conditions. In past analyses, the METRo software has forecasted road 

temperatures that are up to 20oC higher than the actual temperature [9].   

There are areas noted that could be improved upon within the METRo model, where there are 

shortcomings in the model’s performance. While METRo is able to predict pavement temperature 

based off of snow and precipitation buildup on the road surface, it is currently unable to predict 

buildup of snow, ice, and rain on the road surface based on weather forecasts. Another shortcoming 

of the METRo software is its inability to evaluate the roadway’s exposure to sunlight when 

predicting its surface temperature. Projected sunlight exposure is a key factor in the increase or 

decrease in pavement temperature, therefore it is crucial to use software able to factor in the amount 

of sun on the roadway’s surface.  

  

Statistical Models 

Since physical model building is complex to simulate accurately, to apply in larger network, 

statistical approaches have been adopted for pavement temperature estimation. Sherif and Hassan 

(2004) developed a multi-linear regression model to predict pavement surface temperature by 

considering air temperature and dew point as independent variables (10). The model further 

included time-lag-dependent variables to eliminate autocorrelation for improvement. The models 

are well fitted by high R-square values above 0.90; however, the prediction accuracy would have 

been clear if the estimation errors and standard deviations were provided for model validation.  

Krsmanc et al. (2013) proposed a linear regression model based on stepwise selection 

method and cross validation process (11). The final models were compared with a physical model 

METRo, and the result showed that statistical models are significantly better than METRo in terms 

of accuracy. Hosseini et al. (2015) developed a multi linear regression model and a neutral network 

model to forecast pavement surface temperature in parking lots with low traffic volume (12). The 

pavement surface temperature outputs of two multi linear regression models are hourly and daily 

based. The linear regression models show low R-square values. The study also developed Artificial 

Neural Network model to detect the complex relationships within variables. However, more 

detailed evaluations are needed to prove the acceptable accuracy of the models.  

The BELLS equations developed using LTPP data are widely used in practice for in-depth 

temperature prediction within flexible pavement structure. The input data using BELLS include 

pavement surface temperature, average air temperature of one day earlier, depth below surface, 

and the time of day of testing (7). However, the pavement surface temperature need to be known 

first, which still relies on temperature sensors or manually measured at test locations.  



Mohseni (1998) proposed the low and high pavement temperature models using data from 

LTPP Seasonal Monitoring Program (SMP) for the purpose of improving asphalt binder selection 

procedure in SUPERPAVE (1). The LTPP-SMP includes 30 test sites throughout the North 

America, collecting average hourly air temperature and pavement temperature of top 5 sensors. 

The low temperature regression model developed using SMP data include variables of air 

temperature, latitude of the section, and depth to surface.  

 

Work Performed - METRo 
METRo Case Study- Boulder, Colorado  

A 2-day performance assessment was carried out starting on 7 July, 2006, in Boulder, Colorado in 

which METRo software was tested alongside the Fast All-season Soil Strength (FASST) model, 

to find a sufficient replacement technology for the aforementioned SNTHERM software. Several 

case studies were performed to compare road temperature predictions from FASST, SNTHERM, 

and METRo to observed road temperatures for an Environmental Sensor Station. For each case, 

two types of analyses were completed: one where road temperature predictions were generated 

using forecast atmospheric data, and another where predictions were generated using actual road 

surface/subsurface observations (perfect prognosis, or perfprog)  

  

The case study began on 7 July 2006. The weather was warm and rainy. However, a “summer cold 

front” came across Colorado and rain ensued as predicted, dropping the temperature to the mid 

60s. For the forecast driven road temperatures, SNTHERM and FASST respond well to the 

reduction in solar insolation associated with the predicted onset of rain. The METRo forecast on 

the first day reflects a clear cloud cover forecast, and it is closer to the peak road temperature than 

the SNTHERM and FASST. However, METRo does not respond well to the predicted rain. This 

data is reflected in the figure 7 below.   

 



  
Figure 7. Comparison of predicted precipitation by model 

 

For the perfect prognosis analysis, METRo showed the best overall road temperature forecast of 

the 3 systems when observed radiation values were considered, while FASST and SNTHERM 

underestimate road temperatures. METRo performs well in this test during the overnight phase, 

however, fails to outperform SNTHERM the next day. METRo software was unable to detect the 

differences between using observed cloud cover to derive solar radiation, and using observed 

radiation for temperature predictions. However, METRo was still able to predict accurate 

temperatures late into the afternoon and evening of the second day. Resulting data from perfprog 

analysis is shown in the figure 8 below.  

  



  
Figure 8. Comparison of predicted temperature by model  

 

The study was continued on November 8 2006, with a record high temperature of 80oF. For the 

forecast driven predictions, METRo’s predictions are the closest to the observed road 

temperatures, while FASST and SNTHERM both underestimate the peak in road temperature. The 

following day (November 9) a weak, unexpected cold front, lead to an inaccurate weather forecast, 

which consequently led to poor predictions by all three technologies. METRo, FASST, and 

SNTHERM all overestimated the road surface temperatures, as shown by the figure 9.  



  
Figure 9. Comparison of predicted road surface temperature by model 

 

The same two-day study was analyzed with perfect prognosis. The perfprog results showed that 

the METRo software provided the best forecast. It is noted that METRo does well with emulating 

the increase and decrease in pavement temperatures during the morning and afternoon, 

respectively, and also does well in predicting overnight pavement temperatures. On the following 

day, the 3 technologies were not misled by the unexpected cold front, and METRo again shows 

the most accurate forecast. METRo and FASST overestimate the pavement temperature on the 

second night, while SNTHERM underestimates, as it did the first night. The aforementioned results 

are shown in the Figure 10.  



  
Figure 10. Comparison of predicted road surface temperature by model  

 

The case study was continued, and finalized, on November 28 2006, with 5 to 6 inches of snowfall 

that began falling at 5PM. On the first day, the forecast driven predictions show all three models 

do well in predicting pavement temperatures. However, METRo provided superior forecasts in the 

afternoon, with FASST overestimating, and SNTHERM under predicting. METRo also does 

notably well in predicting pavement temperatures upon snowfall, with only a slight cold bias 

during day 2, and a slight warm bias through the second night see figure 11.  



  
Figure 11. Comparison of predicted road surface temperature by model with snowfall  

 

In the perfprog analysis, results are similar to the forecast driven test results. While all three models 

underestimate the peak road temperature, METRo does well in predicting the decrease in road 

temperature throughout the afternoon, while temperature decreases by FASST and SNTHERM are 

predicted too early. Throughout the night of November 28, METRo remains the most accurate 

forecast, while FASST and SNTHERM predict temperatures too cold and too warm, respectively. 

Day two forecasts show an underestimation of the increase in pavement temperature upon sunrise 

by the METRo model. The predictions by FASST after sunrise are accurate, but predictions are 

overestimated throughout the day. SNTHERM showed poor results due to the buildup of snow, 

causing for inaccurate forecasts by the model. These results are shown in the figure 12 [8].   



  
Figure 12. Comparison of predicted road surface temperature by model with snowfall  

 

METRo Case Study- Ames, Iowa 

A 28 day study was conducted on Interstate Highway 35 in Ames, Iowa, to further analyze the 

precision and accuracy of the METRo software in forecasting pavement temperatures. A 2 month 

calibration validation test was conducted using the METRo model in order to validate the results 

given by the model in relation to observed phenomena. The station observed for calibration 

validation was station RAMI4, located on I-35 where it overpasses East 13th Street in Ames, Iowa. 

For this calibration validation, METRo required 3 separate input schema: RWIS Station 

Observations, Atmospheric Forecasts, and RWIS Station Configuration. The station was analyzed 

for archived data from January 3, 2014 to January 31, 2014.  

 

METRo Data Format 

METRo is able to accurately predict the road conditions in an area based off of the observed road 

conditions, predicted forecast and station location details. These files must be in an .xml format or 

else METRo will not be able to run. Additionally, the observed conditions must overlap with the 

predicted forecast so that METRo has a baseline as to how the road will act against the given 

forecasted data. The forecasted data must be in an hourly format and it is advised that the 

observation is also in an hourly format. This is because METRo needs the observation and forecast 

data array length to be the same size. If the data is not the same size, METRo will automatically 

cut the data until the array lengths the same size. Thus, in order to not lose any data, the data sets 

should both be in an hourly format and be the same array size.  

 



The observation, station, forecast and output roadcast files each have their own parameters which 

define them. Table 1 describes the parameters that make up the observation data set. The element 

names describe how the xml file should abbreviate each field description. If this is not setup 

correctly with the correct units, METRo will either produce a fatal error or output the wrong data. 

 

Table 1: Required Data Format for the Observation data file 

Field Description  Element Name  Unit  

Date and time of observation  observation-time  ISO 8601  

Air temperature  at  Celsius  

Dew point  td  Celsius  

Presence of precipitation  pi  0: No -- 1: Yes  

Wind speed  ws  km/h  

Road condition  sc  SSI code  

Road surface temperature  st  Celsius  

Road subsurface temperature 

(40 cm)  

sst  Celsius  

 

Atmospheric forecasts are needed for the METRo model to formulate accurate pavement 

temperature forecasts based upon atmospheric conditions. Phenomena such as cloud cover, wind 

speed, air temperature, and dew point temperature are prominent in affecting the temperature of 

pavement. Table 2 shows atmospheric forecasts inputs needed by the METRo model. 

   

Table 2: Required Data Format for the Forecast data set 

Field Description  Element Name  Unit  

Date and time of forecasted 

elements  

forecast-time  ISO 8601  

Air temperature (1.5 m)  at  Celsius  



Dew point (1.5 m)  td  Celsius  

Rain precipitation quantity 

since the beginning of the 

forecast  

ra  mm  

Snow precipitation quantity 

since the beginning of the 

forecast  

sn  cm  

Wind speed (10 m)  ws  km/h  

Surface pressure (at the station 

height)  

ap  mb  

Octal cloud coverage (0-8)  cc  octal  

  

 

The Station Configuration input schema is a configuration of the RWIS station being analyzed 

for its data output. For this study, station RAMI4 in Ames Iowa, located on Interstate 35. Table 3 

shows the configuration of station RAMI4.  

  

Table 3: RAMI4 Station Configuration format 

Field Description  Element Name  

Version number  version  

Date of creation  production-date  

Time zones of station  time-zone  

Latitude and longitude  coordinate + latitude, longitude  

Station type  station-type  

  

One of the variables produced by the roadcast output file is the road condition, or rc.  Table 4 

shows the different variables and their respective road conditions as produced by METRo.   



 

Table 4: Different Road Conditions with METRo Values 

Description of Road Condition METRo Value 

Dry Road 1 

Wet Road 2 

Ice/Snow on the Road 3 

Mix Water/Snow on Road 4 

Dew 5 

Melting Snow 6 

Frost 7 

Icing Rain 8 

 

 

Results and Discussion 

Installation of METRo is a tough and tedious process when installed on Ubuntu, this is due to the 

fact that METRo relies on a lot of dependencies as runs code in python, C++ and FORTRAN. 

FORTRAN is an old language and should eventually be replaced by a more robust and current 

language. Additionally, the steps for proper installation on the METRo wiki often did not work 

and required someone with advanced knowledge in Linux to navigate around these problems. A 

test was completed on another Linux distribution, CentOS in which the installation of METRo was 

attempted. The installation of METRo took a fraction of the time then it did on Ubuntu, thus future 

work on this project should be completed on the CentOS distribution for ease of installation and 

use. In order to make the process of using METRo easier, a GUI was created that allowed for 

METRo to be accessed independently of the command line. This GUI was operational in both 

Linux and Windows, Figure 14. This means that the user of METRo does not have to be proficient 

in the command line in order to run METRo. 

 



 

Figure 14. GUI implementation in Windows (left) and Linux (right) 

 

Data manipulation was a huge part of getting METRo to work as once the installation was 

successfully completed, the data needs to be properly formatted as stated above or else METRo 

will not be operational. This data can be downloaded from 

https://mesonet.agron.iastate.edu/RWIS/ which will give the observation data and  

https://gis.ncdc.noaa.gov/maps/ncei/lcd which is where the forecasted data is located. The data 

was manipulated in excel which allowed large amount of data to be altered at one time. This 

process was limited to the processing power of the computer as altering large amounts of data takes 

a vast amount of time. For ease of use in the future, the data should be manipulated in a more 

robust program like MATLAB. The data was converted from csv file to xml format using a python 

script. Thus, setting up the data in the correct format in the excel file was imperative. 

 

https://mesonet.agron.iastate.edu/RWIS/
https://gis.ncdc.noaa.gov/maps/ncei/lcd


 

Figure 15. METRo air temp vs predicted air temp over 4 months 

 

The graph above shows the difference between the observed air temperatures to the output of 

METRo’s air temperature, figure 15. The blue lines are for METRo while the red is for the 

observed. The reason being that METRo is off in the graph above is because one of its faults is 

failure to be compatible with summer temperatures. This is why the readings are much higher than 

the actual given readings from the observed air temperature. This shown to be true because once 

it reaches the month of April it is severely higher. As said previously in the report METRo is meant 

primarily for colder conditions and not warmer temperatures. 



 

Figure 16. METRo surface temp vs predicted surface temp over 4 months 

 

The graph in figure 16 demonstrates METRo’s surface temperature to the observed surface 

temperature. This is the predicted weather given by METRo; as it is seen above METRo is very 

off compared to actual readings from the observed. This is due to METRo taking in readings from 

the overall day in frequency of hourly intervals. This will have it estimating the overall weather 

predictions to a close approximation for the day, which will vary from actual data taken by the 

station for observation. 

 



 

Figure 17. METRo rain and snow predictions 

 

The graph above shows the rain and snow predictions given by METRo. Although METRo 

managed to predict the snow for January and most of February, there is much more rain than snow 

in the months that approach warmer temperatures. This can help with road maintenance because 

the salt trucks will know how much salt is required for the roads depending on the amount of snow 

on the road. Likewise, predicting the amount of rain will help cities figure out ways to avoid 

flooding on the streets and highways. This is one of the many benefits that METRo will have when 

it is finally perfected and ready to be launched. 

 

 



 

Figure 18. 48 Hour Road Conditions 

 

A follow up to the study done on the RWIS station in Ames, Iowa was conducted in order to reduce 

the amount of noise in the data. This was completed by shortening the span of time of METRo’s 

output from four months down to 28 days. METRo should ideally be used for shorter periods of 

time and mostly in the winter as these are the conditions where METRo is the most beneficial.  

METRo’s output of the road conditions in the roadcast file were plotted in figure 18 to show the 

several different road conditions forecasted over a two day period from January 14, 2014 to 

January 16, 2014.  Several different road conditions were observed over the two day period.  

Having accurately predicted road conditions is important in preparing for winter storm 

maintenance because maintenance crews need to know if snow or icy conditions will persist on 

the roads in order to prepare salt trucks.   

 

Figure 19. Snow Accumulation on Road 



Ease of Access 

Another look was taken at the GUI displayed in Figure 14 and improvements were made in order 

to make it easier to use. The GUI was written in python with the use of tkinter which allows the 

user to make a GUI. This was completed by re-imaging the entire layout of the GUI for a more 

aesthetic look. With the selection of each button, a file drop down menu appears where the user 

can select the resected file. Normally, the user would have to type in the location of their files in 

the command line. However, with the use of a button, when the user selects the file that they want 

to add, the code will automatically be generated for the location of that file and the file name will 

also be added to the command line.  Additionally, when using the old GUI, there was no way for 

the user to clear their input into METRo unless they restarted the GUI. Thus a clear button was 

added to the GUI so if the user made a mistake on selecting their files, they can easily clear the 

input code without having to restart the program. Furthermore, the help button will now direct the 

user to the METRo wiki, where they can find more detailed information on METRo.  

 

 
Figure 20. Updated GUI 

Proper instillation of this GUI is key in order to for it to work properly with METRo. The GUI 

files can first be downloaded off of GitHub with the link to the GitHub location is found on Dr. 

Nazari’s webpage. Once the file is downloaded, it should be placed in the following location: 

“/usr/local/metro/metro/usr/bin”. This is where the metro.py file is located, which is the location 

that the user of METRo would normally have to go to if they were to run METRo. After the file is 

placed in the according directory, a shortcut should be made of the file and placed on the desktop. 



When the user accesses the shortcut on their desktop, the shortcut will act like a normal program 

desktop shortcut and launch the GUI. The user is now fully setup to use the GUI to run METRo. 

Additionally, when working with METRo, the inputs to METRo have to be in xml format. 

However, when working with the forecast and observation parameters, the data is in csv and xlsx. 

In order to easily transfer the files to xml file format, two different python scripts were created that 

takes in a csv file and output the proper xml format for METRo. A script for the forecast file and 

observation file were created and can be located on the GITHub page for the METRo GUI. When 

using the scripts, the user should place the scripts in the same location as the file that they are 

trying to convert. Additionally, the user should go into the python scripts and change the file name 

and the output file name respectively. This will make more sense when looking at the python file 

and is further detailed in the python script itself. The user can call the script with the the python 

command in the command line.  

 

Conclusion 
In conclusion, it was found that METRo’s ideal usage should be for short periods of time.  Using 

a shorter period of time allows METRo to produce a more accurate forecast.  When implemented 

by different companies, METRo should mainly be used in the winter time, as this is when 

METRo’s road condition or snow accumulation output can be utilized the most.  A GUI was also 

created to make METRo more accessible to users, providing ease of access and reducing the time 

it would normally take to input data, making Road Weather Information Systems technology more 

practical for implementation into industry. 

 

Work Performed – Statistical Models 
 

LTPP DATA COLLECTION AND PREPARATION 

Data Collection 

The data used in this study were collected from the Federal Highway Administration's (FHWA) 

Long-Term Pavement Performance (LTPP) Program at INFOPAVE. The integration of pavement 

surface temperature from falling weight deflectometer (FWD) test data and metrological data from 

MERRA provide sufficient information to accomplish the objectives of this study. Modern-Era 

Retrospective Analysis for Research and Applications (MERRA), Version 2, supported by NASA, 

is recently released by LTPP database. It provides hourly based weather and climate information 

world-wide beginning in 1980.  

From literature review, the most important variable in statistical regression model is air 

temperature; other variables help to explain the variation of pavement surface temperature are 

solar radiation, wind velocity, and dew point (1, 10, 12). To evaluate the contribution from possible 

meteorological variables in the regression model, we collected five meteorological variables and 



three variables the day before from MERRA data sets. The meteorological variables are wind 

velocity, precipitation, surface shortwave radiation, cloud cover, humidity, total solar radiation the 

day before, average air temperature the day before, and the average humidity the day before. In 

addition, pavement type, surface layer thickness, air temperature and pavement surface 

temperature are extracted from data set of “FWD Data without Drop Data” under “Data Selection 

and Download”.  

Since this study is interested in the temperature response of rigid pavement surface under 

cold weather conditions, only states in cold region were considered. In further data screening steps, 

the states of Iowa are selected because it has fairly large amount of road surface temperature data 

during cold months. The test time of the selected data is from 1990 to 2010. Noted that year 

selection is not an impact factor of the analysis, the primary intention of time period selection is 

to collect sufficient data points in cold seasons.  

 

Interpolation with Linear Approximation 

The biggest obstacle of collected data is the unmatched time of observations from two different 

data sets. Variables of pavement type, surface layer thickness, air temperature, and pavement 

surface temperature extracted from FWD tests have uneven time spaces varying from one minute 

to hours depending on the test date and time. On the other hand, meteorological variables collected 

from MERRA data sets are hourly based data at time of integral points.  

To optimize the use of available data without compromising the accuracy of 

meteorological variables, locally weighted variables using linear approximation for data 

smoothing is introduced. With this process, the resolution of meteorological variables collected 

from MERRA data sets will change from hourly based to minute based.  Since the time intervals 

are small, the assumption is the relationship of meteorological variables between two hours is 

linear and can be approximately reproduced from data given by MERRA data set. Equation 1 

shows a unique linear function passing through two neighboring data points of (𝑡𝑚,𝑓(𝑡𝑚)) and 

(𝑡𝑚+1,𝑓(𝑡𝑚+1)). Finally, the estimated meteorological variables were matched according to the 

SHRP_ID and test time from FWD data set.  

𝑓(𝑡) =
𝑡−𝑡𝑚+1

𝑡𝑚−𝑡𝑚+1
 𝑓(𝑡𝑚) +

𝑡−𝑡𝑚

𝑡𝑚+1+𝑡𝑚
 𝑓(𝑡𝑚+1)                               (1) 

 𝑡𝑚 ≤ 𝑡 ≤ 𝑡𝑚+1, 𝑚 ∈ [0,1,2,3, … , 23] 

Where, 𝑡  equals to the time between two integral time points corresponding to the time of 

dependent variable collected from FWD tests; 𝑓(𝑡)equals to the reproduced meteorological values 

at time 𝑡; and 𝑚 equals to integral time from morning (0) to midnight (23).  

 

Statistical Summary 

Table 1 show the statistical summary of dependent and independent variables. The number of 

observation is 455. The minimum value of pavement surface temperature is -5.2℃, the maximum 

is 29℃, and the average is 11.08℃. Amount all the independent variables, air temperature is most 

closely related to pavement surface temperature. Figure 1 plots pavement surface temperatures 



versus air temperatures that were used in the analysis. It is obvious that there is a positive 

correlation between pavement surface temperature and air temperature. However, the relationship 

between pavement surface temperature and air temperature may not be fully captured in a simple 

linear relationship. 

 

Table 1 Statistics Summary of Dependent and Independent Variables (Number of Observations 455) 

Variable Description Label Unit Mean Std Dev Minimum Maximum 

Pavement Surface Temperature T_PVMT_C ℃ 11.08 7.26 -5.20 29.00 

Air Temperature T_AIR_C ℃ 10.40 7.23 -9.60 20.90 

Wind Velocity W m s-1 10.73 4.70 0.00 24.61 

Could Cover C % 0.52 0.38 0.00 1.00 

Shortwave Surface SO W m-2 489.72 230.13 9.10 980.20 

Precipitation P mm 0.01 0.02 0.00 0.20 

Relative Humidity H % 55.77 14.56 28.00 88.00 

Total Surface Shortwave Radiation 

the Day Before 
S_1 W m-2 4358 1606 1013 8311 

Average Relative Humidity the 

Day Before 
H_1 % 71.87 10.93 45.00 94.00 

Average Air Temperature the Day 

Before 
T_1 ℃ 7.66 7.86 -9.30 22.50 

Latitude  LAT Degree 41.88 0.36 41.56 42.62 

Pavement Thickness TH mm 33.12 12.10 11.70 52.60 

 

 

 
Figure 1 Rigid Pavement Surface Temperature v.s. air temperature 
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MODEL DEVELOPMENT 

Variables Selection 

In order to develop a statistical multiple linear regression model using meteorological variables 

and pavement properties to predict pavement surface temperature under cold weather condition, 

the model construction uses stepwise selection process to include the most appropriate 

independent variables.  

Stepwise regression algorithm is one of the most popular processes among model 

selection-type procedures. It is a combination of forward and backward selection methods; when 

it adds a variable the process it also considers dropping any of the variables in the model that are 

insignificant at level alpha (13). Since a variable added in the earlier steps might be unnecessary 

because the relationship between it and other repressors are changed in each step. The cutoff values 

for entering and dropping variable are alphas at 0.05, which means all coefficient estimates have 

to be significant between 0 to 0.05 levels. 

 After running a preliminary stepwise regression using all variables shown in Table 1 to 

predict pavement surface temperature, a common type of model inadequacy has been detected 

through plots of residuals. Figure 2 shows the predicted value against residual. The ideal graph 

would be where points are in a horizontal band and departure from that indicates model defects; 

however, a u-shape has been shown which suggests that relationship is not linear and more x 

variables are needed. After adding other important plots of residuals against each regressor, a 

similar trend of u-shape had been found specific to the variable of air temperature as shown in 

Figure 3. We decided to incorporate a square term of air temperature in the model which later has 

been proved to significantly improve the model adequacy. In addition, the transformation of 

logarithm with the base of 10 has been applied to the variable of Total Surface Shortwave 

Radiation the Day Before as to avoid the extremely small coefficient of that variable.   

 



 
Figure 2 Plot of Predicted Value against Residual 

 
Figure 3 Plot of Residuals against the Regressor of Air Temperature 

 

Table 2 shows the summary of stepwise variables selection process in predicting pavement 

surface temperatures for concrete surface. The prediction model includes variables of air 

temperature, a square term of air temperature, the product of air temperature and pavement 

thickness, average humidity the day before, and total surface shortwave radiation the day before. 

Each variable are significant at 5% level and the final model is overall significant with very low 

P-value close to zero. In addition, the final step has a small Mallow’s C (p) value of 6.80 which is 



very close to numbers of parameters of 5, indicating that it is the most desirable selection of subset 

parameters among other regression models. When Mallow’s C (p) value is far deviated from value 

of the numbers of parameter in the model, there is bias with the regression equations. Mallow’s 

C(p) value is related to mean square error of a fitted value, as shown in Equation 2 (13).  

𝐸 [𝑦𝑖̂ − 𝐸(𝑦𝑖)]2 =  𝐸 [𝑦𝑖̂ − 𝐸(𝑦𝑖)]2 + 𝑉𝑎𝑟 (𝑦𝑖̂)                            (2) 

Where, 𝑦𝑖̂ is the predicted value, and 𝑦𝑖is the observed value.  

 

Table 2 Summary of Stepwise Selection 

 
Instead of depending on the stepwise variable selection process, it is also desirable to 

consider regression models with all possible combinations of the independent variables and 

compared with the result generated by stepwise process. In this case, there are thirteen independent 

variables available, which means 8192 (213) models are possible for examination. In the output 

generated by SAS, the first three potential winning models with a ranking of the highest Adjust R-

square were compared.  

Table 3 Top 3 models with the highest Adjusted R-Square 

 
 

From Table 3, the first model with 5 variables is the same with the result using stepwise 

selection, and the three models have very similar performance in most criteria such as Adjust R-

square, R-square and MSE. Although the second and the third model have one additional variable 

in the model, comparing the first model, it shows that the introduction of variables of latitude and 

shortwave radiation to the surface does not increase the adjusted R-square value. Hence, the 

variable of latitude and shortwave radiation brings similar information with other variables or 

provide little improvement to the model. One of the possible explanations would be latitude within 

a single state fails to significantly alter pavement surface temperature although it might has a 

superior impact within a larger geographic extent, for example, in national-wide. At the same time, 

the variable of shortwave radiation provides less information to explain the variable of the change 

of pavement surface temperature as compared to the total surface shortwave radiation the day 

before. By evaluating all possible combinations of the independent variables, the variable selection 

of Stepwise process has been reinforced.  



Detection and Examination of Outliers 

One of the assumptions in building multiple linear regression models it that the errors should be 

normally distributed with mean 0 and constant variance. Since the violations of the basic multiple 

linear regression assumptions might lead to an extreme deviation of expected performance of the 

model, the assumptions should be tested and effectively corrected whenever necessary. It is noted 

that the above sections of variables selection are global model properties which do not guarantee 

model adequacy, thus the examination of outliers to diagnose the violations of the basic regression 

assumptions are necessary. 

 

To evaluate and detect the potential outliers of the 455 observations of asphalt pavement 

based on the model selected by stepwise process, two methods of Cook’s Distance and Studentized 

Residual for residuals scaling are chosen. Cook (1979) has suggested a way to measure the 

influence of a point on the estimated values of β′s. The measure of the squared distance between 

the least-squares estimate based on all n pints β̂ and the estimate obtained by deleting the ith point 

βî (14). Another way to interpret Cook’s distance is that the vector of fitted values moves when 

the ith observation is deleted. Studentized Residual improves the residual scaling by dividing the 

prediction error by the exact standard deviation of the ith residual. The violations of model 

assumptions are more likely at remote points which drag the regression model towards it as to 

reduce the large error. Studentized Residual larger or equal to 3 are suspect for the outliers; Cook’s 

D equal or larger than 4/n (n is the number of observations) is the widely accepted cut-off values 

for highly influential points.  

By computing Cook’s Distance and Studentized Residual for each observation, 38 data 

points exceeding the threshold values are filtered out. Most of the outliers are data points 

concentrate in 1990, 1992 and 1993. The possible causes would be measurement errors due to 

sensor malfunction, extreme weather conditions, regional climate difference, changes of traffic 

conditions, or changes of landscaping such as new plants and high raised buildings. Such 

observations might create confusions in model building process. As a result, the data points were 

deleted as suspected measurement errors although the alarm of high Cook’s Distance is worth 

further examination in the future analysis. 

 

Model Reconstruction 

With the removal of outliers, the number of observations changes from 455 to 417, the model 

structure changed responding to the new data set. Some of the independent variables selected from 

previous model building process using original data set might not be insignificant at the moment. 

Thus model reconstruction is necessary to find the best fit with new set of data. The selection 

method will be stepwise process with cutoff values for entering and dropping variables at 5% 

significant level as well as considering regression models with all possible combinations of the 

independent variables.  



The best model structure from stepwise analysis of pavement surface temperature 

prediction remain the same, including air temperature, a square term of air temperature, the product 

of air temperature and pavement thickness, average humidity the day before, and total surface 

shortwave radiation the day before. At the same time, the adjust R square is 0.8893 which is higher 

than the previous model structure with 0.8266. Another significant improvement would be the 

reduction of MSE from 9.15 degree Celsius to 5.33 degree Celsius, indicating the accuracy of the 

prediction has improved. The increased accuracy can be shown from the comparison of two scatter 

plots of predicted value verses observations of pavement surface temperature. The scatter plot on 

the left (a) in Figure 4 is from regression model with original data set, and scatter plot on the right 

(b) is from regression model without outliers. It is obvious that predicted pavement surface 

temperature on (b) plot is more concentrated and fall near the line of predicted value equals to 

observations.  

𝑅𝑖𝑔𝑖𝑑 𝑃𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑢𝑡𝑟𝑒 [℃]= 

(−)11.863 + 0.0151 ∗ 𝑇_𝐴𝐼𝑅_𝐶2 + 0.815 ∗ 𝑇_𝐴𝐼𝑅_𝐶 + 0.046 ∗ 𝐻_1 + 2.897 ∗

              𝐿𝑂𝐺_𝑆_1 − 0.048 ∗ 𝑇_𝐴𝐼𝑅_𝑇𝐻/10                                                                                  

(3) 

Where, T_AIR_C is Air Temperature in ℃; H_1 is average humidity the day before in the unit of 

percentage; S_1 is total surface shortwave radiation the day before in W m-2; 𝑇_𝐴𝐼𝑅_𝑇𝐻 is the 

product of air temperature in ℃ and pavement thickness in mm. 

 

 
Figure 4 Scatter plots of predicted value verses observations of asphalt pavement surface 

temperature (degree Celsius): (a) regression model with original data set; (b) regression model 

without outliers 

 

MODEL EVALUATION 

 

Cross-Validation  

Picard and Cook (1984) pointed out that when a winning model is chosen using a particular set of 

data, the ability of prediction of future observations with the model is not likely to be the same as 



one would expect (15). The dilemma of difference between sample and population is persistent. 

Ideally, a good model requires evaluation from future data to get a sufficient estimator of MSE 

although it is impracticable during model construction process. To accelerate this process, part of 

the present data can be reserved for model validation. Thus, the predictive ability of a model could 

be expected by its ability to predict the data of the hold-out sample. At the same time, the predictive 

ability of a model is reflected by statistical properties of the difference between the observed and 

predicted dependent variables(𝑌𝑖 − 𝑌̂𝑖) (15).   

This study uses k-fold random cross validation for holdout process. Figure 5 shows the 

working principle of k-fold cross validation. The data is roughly split into 5 equal-sized parts. The 

observation is randomly chosen using binomial distribution with assigned p=0.8 and (1-p) =0.2. 

The training process consists of k-1 folds of data using method of least squares estimation, and 1 

fold of data is holding out for validation purpose. The fitted models from the training process are 

used to calculate the predicted residual sum of squares on the validation part. As a result, estimated 

prediction error denoted by CVPRESS can be obtained from the sum of k predicted residual sum 

of squares.  

Root Mean Square Error and CVPRESS are widely used measures of model performance 

in cross validation. The results show that Root Mean Square Error is 2.308 degree Celsius for 

pavement prediction model the CVPRESS is 2259 from the five-fold cross validation, indicating 

the standard deviation of the difference between the predicted values from the model and the real 

observations of pavement surface temperature is about 2 degree Celsius. Hence the selected model 

is validated and the accuracy to predict concrete pavement surface temperature is within 2.3 degree 

Celsius.  

 



 
Figure 5 Applying k-fold cross validation (k=5) 

 

DISCUSSION & CONCLUSION  

This study developed and validated statistical regression models for rigid pavement surface 

temperature prediction to facilitate winter road maintenance. Compared to physical model for 

pavement temperature prediction, the inputs of the proposed model only require basic pavement 

information and easily assessable weather forecasting data. Moreover, the proposed model reaches 

the ideal situation when variable coefficients are physically logical and the selected model is in a 

good statistical performance. 

After data collection and preparation, a range of statistical analyses were conducted to 

develop multiple-linear regression model for rigid pavement surface temperature prediction under 

cold weather conditions. Variables included in the model are air temperature, a square term of air 

temperature, the product of air temperature and pavement thickness, average humidity the day 

before, and total surface shortwave radiation the day before. Each variable and the final models 

are significant at level of 0.05. With an internal five-fold cross validation applied to validate the 

predictive ability of the model for future observations, the proposed model can accurately predict 

rigid pavement surface temperature having errors within 2.3℃.  

Improvements of the regression model might include the variables of traffic conditions. 

External data for model evaluations might increase the reliability of the developed models. 

Moreover, spatial analysis of pavement surface temperature prediction incorporating with 

Geographic information system (GIS) in the network level would be expected to facilitate winter 

maintenance planning and decision making.  

 



REFERENCES: 
1. Nazari, Rouzbeh, (2016). Evaluation of Simulation Models for Road Weather Information Systems. 

University Transportation Research Center Technical Proposal  

2. Chapman, L. J. E. Thornes, A. V. Bradley, (2001a). Modelling of road surface temperature from a 

geographical parameter database.  Part 1: Statistical, Meteorological Applications, 8: 401-419. 

3. Chapman, L. J. E. Thornes, A. V. Bradley, (2001b). Modelling of road surface temperature from a 

geographical parameter database.  Part 2: Numerical, Meteorological Applications, 8: 421-436. 

4. Chapman, Ll, J.E. Thornes, (2006) A geomatics-based road surface temperature prediction model, 

Science of the Total Environment, 360: 68-80. 

5. Crevier, L-P and Y. Delage, (2001). METRo: A New Model for Road-condition Forecasting, J. Applied 

MeteStephen A. Ketcham, L. David Minsk, Robert R. Blackburn, Edward J. Fleege    orology, 40:2026-

37. 

6. Gui, J., Phelan P.E., Kaloush K.E., and Golden J.S. (2007). Impact of Pavement Thermophysical 

Properties on Surface Temperatures. Journal of Materials in Civil Engineering, 19(8): 683-690. 

7. Gustavsson, T., (1999). Thermal Mapping, a technique for road climatological studies, Meteorological 

Applications, 6:385-94. 

8. National Center for Atmospheric Research, (2007) A Comparison of Road Temperature Models: 

FASST, METRo, SNTHERM 

9. Ho, C., and Romero P. (2009). Low Design Temperatures of Asphalt Pavements in Dry– Freeze 

Regions Predicting by Means of Solar Radiation Transient Heat Transfer and Finite Element Method. 

Transportation Research Record, (2127): 60-71. 

10. Stephen A. Ketcham, L. David Minsk, Robert R. Blackburn, Edward J. Fleege, (1996). Manual of 

Practice for an Effective Anti-Icing Program. US Army Cold Regions Research and Engineering 

Laboratory 

11. Krsmanc, R., V. Tarjani, R. Habrovsky, A. Sajn Slac, (2014): Upgraded METRo model within Matic  

12. B., Tepic J., Sremac S., Radonjanin V., Matic D., and Jovanovic P. (2012). Development and 

evaluation of the model for the surface pavement temperature prediction. Metalurgija, 51(3): 329-332. 

13. Guymon Gary L., Berg L. Richard, Hrmoadka V. Theodore, (1993), Mathematical Model of Frost 

Heave and Thaw Settlement in Pavements 

14. Mohseni, A. LTPP seasonal asphalt concrete (AC) pavement temperature models, FHWA-

RD-97-103, 1998. 

15. Lukanen, E. O., Stubstad, R., & Briggs, R. Temperature predictions and adjustment factors 

for asphalt pavement, FHWA-RD-98-085, 2000 

16. Sherif, A., & Hassan, Y. Modelling pavement temperature for winter maintenance operations. 

Canadian Journal of Civil Engineering, 31(2), 2004, pp. 369-378.  

17.  Kršmanc, R., Slak, A. Š., & Demšar, J. Statistical approach for forecasting road surface 

temperature. Meteorological Applications, 20(4), 2013, pp. 439-446.  

18. Hosseini, F., Hossain, S. K., Fu, L., Johnson, M., & Fei, Y. Prediction of Pavement Surface 

Temperature Using Meteorological Data for Optimal Winter Operations in Parking Lots, 

Proceeding of the 16th International Conference on Cold Regions Engineering, 2015, pp. 440-



451. 

19. Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to linear regression analysis: 

John Wiley & Sons, 2015 

20. Cook, R. Dennis Influential Observations in Linear Regression. Journal of the American 

Statistical Association, 74 (365), 1979, pp. 169–174. 

21. Picard, R. R., & Cook, R. D. Cross-validation of regression models. Journal of the American 

Statistical Association, 79(387), 1984, pp. 575-583.  

 

 

  

https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association


APPENDIX: 
 

1: List of Deliverables 

1. Poster for Rowan University’s annual STEM Symposium 

2. Poster for Rowan University’s Engineering Clinic Showcase 

3. Quarterly Report submitted to University Transportation Research Center (UTRC) 

 

2: Graphs 

 
Figure A1: Air temperature over time 

 

 
Figure A2: Road conditions over time 



 

 
Figure A3: Snow cover over time 

 

 
Figure A4: Dr. Nazari’s updated website 

 

 

 



 
Figure A5: Road Weather Information System poster  

 

 

3: Links  

1. METRo Wiki: https://framagit.org/metroprojects/metro/wikis/METRo 

2. Dr. Nazari’s Website: http://users.rowan.edu/~nazari/RWIS.html 

3. Github: https://github.com/jacobg0/METRo-GUI 

4. METRo Download: https://framagit.org/metroprojects/metro 

5. Observation Data: https://mesonet.agron.iastate.edu/RWIS/ 

6. Forecast Data: https://gis.ncdc.noaa.gov/maps/ncei/lcd 

 

4: GUI Source Code 
# GUI 

 

from Tkinter import * 

import os 

import webbrowser 

import tkFileDialog, Tkconstants, Tkinter 

 

https://framagit.org/metroprojects/metro/wikis/METRo
http://users.rowan.edu/~nazari/RWIS.html
https://github.com/jacobg0/METRo-GUI
https://framagit.org/metroprojects/metro
https://mesonet.agron.iastate.edu/RWIS/


from tkFileDialog import askopenfilename 

from tkFileDialog import asksaveasfile 

 

root = Tk() 

root.title("METRo") 

#root.configure(background = 808080) 

 

# grab length of the array then subtract the length of the array 

# vary code for each variable then add together 

 

 

 

class Application(Frame): 

   # declaring global variables 

   global code0 

   global code 

   global code1 

   global code2 

   global code3 

   code0 = "" 

   code = "" 

   code1 = "" 

   code2 = "" 

   code3 = "" 

 

 

 

   global Metro_wiki 

   Metro_wiki = 'https://framagit.org/metroprojects/metro/wikis/METRo' 

 

 

   # defining classes 

   def __init__(self, master): 

       Frame.__init__(self, master) 

       self.grid() 

       self.create_label() 

       self.btn_forecast() 

       self.btn_station() 

       self.btn_observation() 

       self.btn_roadcast() 

       self.create_widget() 

       self.run_metro() 

       self.Metro_def() 

       self.Explination() 

       self.Explain_code() 

       self.result() 

       self.btn_clear() 

 

   # Label for text, background color(bg), font color, font style and size, heigth and 

width of the label 

 

 

   def create_label(self): 



       self.label = Label(self, text="Welcome to METRo", fg="black", font=(None, 18), 

height=2, width=0) 

       self.label.grid(row =0,column=2) 

 

   def Metro_def(self): 

       self.label = Label(self, 

                          text="METRo stands for Model of the Environment and 

Temperature of Roads which is able to predict the road conditions", fg="black", 

font=(None, 10)) 

       self.label.grid(row=1, column=0, columnspan=5) 

 

   def Explination(self): 

       self.label = Label(self, 

                          text=" Use the following buttons to import your data and 

select a proper output file destination", 

                          fg="black", font=(None, 10)) 

       self.label.grid(row=2, column=0, columnspan=5) 

 

   def Explain_code(self): 

       self.label = Label(self, 

                          text="Additonally the box below will display the code that 

will executed", 

                          fg="black", font=(None, 10)) 

       self.label.grid(row=7, column=0, columnspan=5) 

 

 

 

   # define all of the possible input buttons 

   def btn_forecast(self): 

       self.button = Button(root, text="Forecast", command=self.forecast, 

justify='center') 

       self.button.grid(row=2, column=0, padx =10,sticky = W) 

 

 

   def btn_station(self): 

       self.button = Button(root, text="Station", command=self.station) 

       self.button.grid(row=2, column=0, padx = 10) 

 

   def btn_observation(self): 

       self.button = Button(root, text="Observation", command=self.observation) 

       self.button.grid(row=2, column=0, padx =10,sticky = E) 

 

   def btn_roadcast(self): 

       self.button = Button(root, text="Roadcast", command=self.roadcast) 

       self.button.grid(row=3, column=0, padx = 10, sticky =  W ) 

 

 

   def btn_clear(self): 

       self.button = Button(root, text = "Clear", command = self.clear) 

       self.button.grid(row=3, column=0, padx = 10, sticky =  E ) 

 

 

   # defines the forecast button 



   def forecast(self): 

       global code 

       global code0 

 

       code0 = "cd /usr/local/metro/metro/usr/bin python metro" 
 

 

       code += " --input-forecast " 

       forecast = tkFileDialog.askopenfilename(filetypes=(("All files", "*.*"), ("XML", 

"*.xml"))) 

       code += forecast 

 

       self.result.delete(0.0, END) 

       self.result.insert(0.0,code0+ code) 

 

 

       # box where metro code is displayed 

   def result(self): 

 

       self.result = Text(self, width=80, height=10, wrap=WORD) 

       self.result.grid(row= 20, column=2) 

 

   # defines the station button 

   def station(self): 

       global code1 

       # global stat 

 

       code1 += " --input-station " 

       stat = tkFileDialog.askopenfilename(filetypes=(("All files", "*.*"), ("XML", 

"*.xml"))) 

       code1 += stat 

 

       self.result.delete(0.0, END) 

       self.result.insert(0.0, code0+code+code1) 

 

   # defines the observation button 

   def observation(self): 

       global code2 

 

       code2 += " --input-observation " 

       observation = tkFileDialog.askopenfilename(filetypes=(("All files", "*.*"), 

("XML", "*.xml"))) 

       code2 += observation 

 

       self.result.delete(0.0, END) 

       self.result.insert(0.0, code0+code+code1+code2) 

 

   # defines the roadcast button 

   def roadcast(self): 

       global code3 

 

       code3 += " --output-roadcast " 

       roadcast = tkFileDialog.askopenfilename(filetypes=(("All files", "*.*"), ("XML", 



"*.xml"))) 

       code3 += roadcast 

 

       self.result.delete(0.0, END) 

       self.result.insert(0.0, code0+code+code1+code2+code3) 

 

   # defines the run Metro button 

   def create_widget(self): 

       self.button = Button(root, text="Run Metro", command=self.run_metro) 

       self.button.grid(row=3, column=0, pady=10) 

 

   # defines what run button actually does 

   def run_metro(self): 

       global code0 

       global code 

       global code1 

       global code2 

       global code3 

       global observation 

 

       # os.system(fore) 

       print(code0+code+code1+code2+code3) 

       os.system(code0+code+code1+code2+code3) 

 

   def clear(self): 

       global code0 

       global code 

       global code1 

       global code2 

       global code3 

 

      # del code 

     #  code = False 

      # code = None 

 

       code0 ="" 

       code="" 

       code1 ="" 

       code2="" 

       code3="" 

 

       self.result.delete(0.0, 'end') 

 

 

       #command = root.quit() 

 

       #os.system('python GUI.0.py') 

 

 

 

 

# Defining a top bar menu 

def NewFile(): 



   print "" 

 

 

def OpenFile(): 

   name = askopenfilename() 

   print name 

 

 

def About(): 

   webbrowser.open(Metro_wiki, 2) 

   print "You are being redirected to the Metro Wiki" 

 

 

 

# create a sub window where the user can select a file to convert from CSV to xml 

def csv_xml(): 

   win2 =Toplevel() 

   win2.title('Convert CSV to XML') 

   win2.geometry("400x200") 

 

 

 

 

   create_label= Label(win2, text="Using the buttons below, selct the file to convert 

and the output file", fg="black", font=(None, 10)) 

   create_label.grid(row=0, column=2) 

 

 

 

   def inputfile(): 

       global csvfile 

 

       csvfile = tkFileDialog.askopenfilename(filetypes=(("All files", "*.*"), ("XML", 

"*.xml"))) 

 

   btn_input = Button(win2, text= "select the file to input", command =inputfile ) 

   btn_input.grid(row=1,column=1) 

 

 

 

 

   #def lift_win1(): 

   #    win2.lift(aboveThis=root) 

 

   #btn_lift = Button(win2, text="Lift win1", command=lift_win1) 

  # btn_lift.pack(padx=30, pady=5) 

 

 

 

 

 

 

      # self.button = button(root, text = "Select your file that you want to convert") 



 

 

 

 

   def create_button(self): 

       self.button = Button(root, text="Convert CSV Forecast to XML", 

command=self.forecast_conversion, 

                            justify='center') 

 

   def forecast_conversion(self): 

       forecast_conversion = tkFileDialog.askopenfilename(filetypes=(("All files", 

"*.*"), ("XML", "*.xml"))) 

       forecast_conversion = fore_csy.py 

 

   def btn_observation(self): 

       self.button = Button(root, text="Observation", command=self.observation) 

       self.button.grid(row=2, column=0, padx =10,sticky = E) 

 

 

 

 

# Defining a file menu 

menu = Menu(root) 

root.config(menu=menu) 

filemenu = Menu(menu) 

menu.add_cascade(label="File", menu=filemenu) 

#filemenu.add_command(label="New XML file", command=NewFile()) 

#command=csv_xml) 

#filemenu.add_command(label="Open", command=OpenFile) 

filemenu.add_command(label="Convert CSV to XML", command=csv_xml) 

 

filemenu.add_separator() 

filemenu.add_command(label="Exit", command=root.quit) 

 

# Defining a help Menu 

helpmenu = Menu(menu) 

menu.add_cascade(label="Help", menu=helpmenu) 

helpmenu.add_command(label="Metro Wiki", command=About) 

 

#root.geometry("410x500") 

 

 

app = Application(root) 

 

root.mainloop() 
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