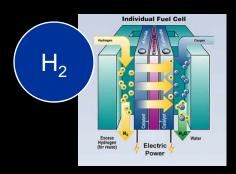
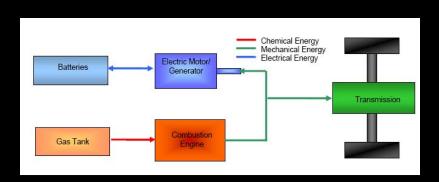
Mobile Source Emissions Reduction Strategies For the NYMTC Region

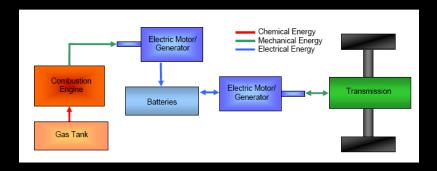

By Nancy Mahadeo Supervised by Larry McAulliffe

Overview

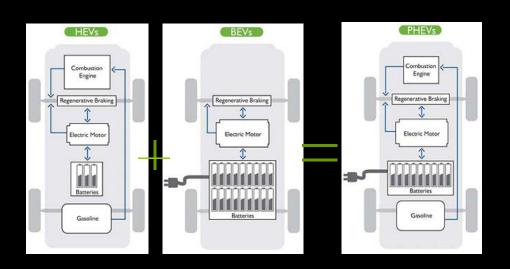
What are the strategies?
Why were they of research interest?
Findings
Conclusion

Four Vehicle Technologies





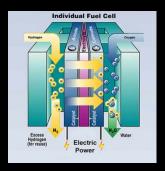
Hybrid Electric


Incoming Buses

Area	Reduction with Incoming Hybrids (tons/year)			
	CO2	PM	NOx	
NYC	198,251	102	542	
Westchester	21,705	11	59	
Rockland	5,989	3	16	
Putnam	2,178	1	6	
Nassau	27,292	14	75	
Suffolk	30,225	15	83	

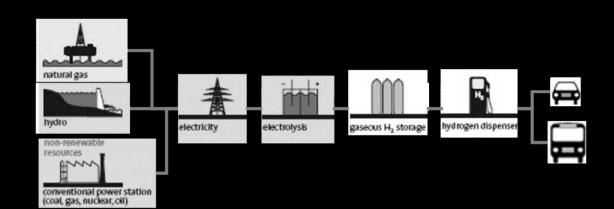
All Buses

Area	Reduction	if All Ve (tons/year	hicles Hybrid r)
	CO2	PM	NOx
NYC	6,608,377	3,385	18,052
Westchester	723,487	371	2,578
Rockland	199,628	102	1,000
Putnam	72,607	37	480
Nassau	909,717	466	16,494
Suffolk	1,007,495	516	2,921


Plug-In Hybrid

	Electric Mode		Hybrid Mode			
	(grams/mile)		(grams/mile)			
	CO2	PM	NOx	CO2	PM	NOx
Passenger car	73%	14%	88%	35%	35%	35%
SUV	74%	18%	88%	35%	35%	35%
Truck	86%	50%	93%	65%	61%	61%
Transit bus	87%	54%	93%	22%	13%	13%
School bus	79%	24%	89%	64%	60%	60%

	Years to Payback
Passenger car	7.6
SUV	5.8
Truck	8.7
Transit bus	3.5
School bus	5.2

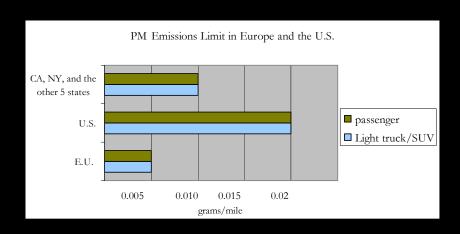

Hydrogen

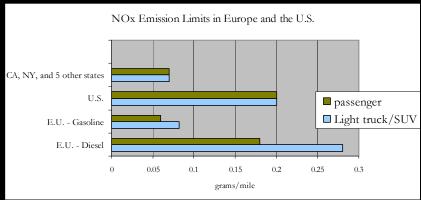
Natural Gas

Electrolysis

Hydrogen (Continued)

Natural Gas


	CO2	PM	NOx
		grams/mile	
Passenger car	-55.0%	-99.8%	-98.3%
SUV	-50.8%	-99.8%	-98.2%
Transit bus	-38.3%	-99.7%	-97.5%


Years t	
	Payback
Passenger car	45
SUV	79
Transit bus	35

Electrolysis

	CO2	PM	NOx
		grams/mile	:
Passenger car	-3.3%	207.6%	-55.5%
SUV	5.8%	159.5%	-51.3%
Transit bus	32.5%	-100.0%	-32.5%

Clean Diesel

	Premium	Savings	Years to
	Cost (\$)	(\$/yr)	Payback
Passenger car	\$17,100	262	65.2
SUV	\$10,425	300	34.8

Conclusions

Hybrids → significant emissions reductions

Plug-In Hybrids → ready for implementation, 5-10 years

Hydrogen Fuel Cell Vehicles → ready for implementation 20+ years

Clean Diesel → not ready today; emissions standards more strict than Europe