Skip to main content

PROJECT DETAILS

Project Dates
10/01/2012 - 06/30/2014
Principal Investigators
Institution
Project Status
Complete

Problem and Regional Significance. Extreme events of all kinds are increasing in either number or severity. Transportation provides vital support to people in such circumstances for evacuation and supplies, yet is often disabled in such disasters. Nationwide and in New York and New Jersey record-setting weather disasters have occurred: the December 2010 snowstorm disabling New York City’s transportation systems and their emergency capability, January 2011 snowstorms, Hurricane Irene in 2011 disrupting Amtrak, and numerous flash floods bringing local and regional rail and road to a standstill. Impacts are temporary or longterm network closures. Accidents and natural hazards combined often escalate consequences. Transportation is heavily dependent on electric power with increasing dependence on information technology. When disasters affect these systems transportation effects are magnified. Disadvantaged populations are particularly vulnerable to lack of access to vehicles, travel routes, and transportation services. The concentration of infrastructure facilities and usage increases the vulnerability, taking the form of the convergence of roadways at single intersections (the Cross-Bronx Expressway - most heavily congested road segment) or the convergence of rail lines at single transfer points, such as the Long Island Railroad’s Jamaica Station. When one concentrated facility is disabled an entire network can be disabled. Though dispersion is needed, it must preserve the density and overall concentration of urban areas. Transportation users need more than one route from origin to destination to reduce the vulnerability posed by concentrated infrastructure. NYC transit and the regional PATH reorganized transit after the 9/11 attacks exemplifying such flexibility. Multi-modal connections provide this flexibility in a more systematic way. Research Approach. To analyze multi-modal connectivity’s role in reducing risks in extreme events, selected multi-modal facilities in the region will be identified for transit using the National Transit database and a new intermodal passenger connectivity database and for roadways using INRIX and other sources. Geographic coverage, capacity, usage, number and type of interconnections, and extreme event experience and capacity for each facility will be defined and statistical summaries provided. A case-based approach will provide analyses of types of multi-modal facilities that have been successful or unsuccessful in emergencies and cover experiences of disadvantaged populations in the UTRC region. Deliverables include a report covering statistical summaries, cases, a literature review of the state of research, the utility and usage of selected databases in characterizing multi-modal facilities and their use in extreme events, and recommendations for the role of multi-modality in response and future research directions.